Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD4+ T-cell–epitope escape mutant virus selected in vivo

Abstract

Mutations in viral genomes that affect T-cell–receptor recognition by CD8+ cytotoxic T lymphocytes have been shown to allow viral evasion from immune surveillance during persistent viral infections. Although CD4+ T-helper cells are crucially involved in the maintenance of effective cytotoxic T-lymphocyte and neutralizing-antibody responses, their role in viral clearance and therefore in imposing similar selective pressures on the virus is unclear. We show here that transgenic virus-specific CD4+ Tcells, transferred into mice persistently infected with lymphocytic choriomeningitis virus, select for T-helper epitope mutant viruses that are not recognized. Together with the observed antigenic variation of the same T-helper epitope during polyclonal CD4+ T-cell responses in infected pore-forming protein-deficient C57BL/6 mice, this finding indicates that viral escape from CD4+ T lymphocytes is a possible mechanism of virus persistence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LCMV control in Pfp−/− mice.
Figure 2: Altered recognition of mutated T-helper epitopes by the transgenic TCR.
Figure 3: CD4+ T-cell antagonism by naturally occurring T-helper epitope variants.
Figure 4: Effect of LCMV T-helper epitope escape in vivo.
Figure 5: LCMV-specific MHC class II-restricted cytotoxicity in vitro.

Similar content being viewed by others

References

  1. McMichael, A. T cell responses and viral escape. Cell 93, 673–676 (1998).

    Article  CAS  Google Scholar 

  2. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  Google Scholar 

  3. Domingo, E. & Holland, J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  Google Scholar 

  4. Ciurea, A. et al. Viral persistence in vivo through selection of neutralizing-antibody-escape variants. Proc. Natl. Acad. Sci. USA 97, 2749–2754 (2000).

    Article  CAS  Google Scholar 

  5. Parren, P.W.H.I., Moore, J.P., Burton, D.R. & Sattentau, Q.J. The neutralizing-antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS 13, S137–S162 (1999).

    CAS  PubMed  Google Scholar 

  6. Pircher, H. et al. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346, 629–633 (1990).

    Article  CAS  Google Scholar 

  7. Borrow, P. & Shaw, G.M. Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo. Immunol. Rev. 164, 37–51 (1998).

    Article  CAS  Google Scholar 

  8. Sette, A. et al. Antigen analogs/MHC complexes as specific T cell receptor antagonists. Annu. Rev. Immunol 12, 413–431 (1994).

    Article  CAS  Google Scholar 

  9. Sloan-Lancaster, J. & Allen, P.M. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev. Immunol 14, 1–27 (1996).

    Article  CAS  Google Scholar 

  10. Klenerman, P. et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 369, 403–407 (1994).

    Article  CAS  Google Scholar 

  11. Bertoletti, A. et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for anti-viral cytotoxic T cells. Nature 369, 407–410 (1994).

    Article  CAS  Google Scholar 

  12. Kalams, S.A. & Walker, B.D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188, 2199–2204 (1998).

    Article  CAS  Google Scholar 

  13. Borrow, P. & Oldstone, M.B.A. Lymphocytic choriomeningitis virus. in Viral Pathogenesis . (ed. Nathanson, N.) 593–627 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  14. Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. Virus-specific MHC class II-restricted TCR-transgenic mice: Effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    Article  CAS  Google Scholar 

  15. Ciurea, A. et al. Impairment of CD4+ T cell responses during chronic virus infection prevents neutralizing-antibody responses against virus escape mutants. J. Exp. Med. 193, 297–305 (2001).

    Article  CAS  Google Scholar 

  16. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  CAS  Google Scholar 

  17. Oxenius, A., Zinkernagel, R.M. & Hengartner, H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 9, 449–457 (1998).

    Article  CAS  Google Scholar 

  18. Hotchin, J. E. & Cinits, M. Lymphocytic choriomeningitis infection of mice as a model for the study of latent virus infection. Can. J. Microbiol. 4, 149–163 (1958).

    Article  CAS  Google Scholar 

  19. De Magistris, M. T. et al. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 68, 625–634 (1992).

    Article  CAS  Google Scholar 

  20. Muller, D. et al. LCMV-specific, class II-restricted cytotoxic T cells in beta 2- microglobulin-deficient mice. Science 255, 1576–1578 (1992).

    Article  CAS  Google Scholar 

  21. Zajac, A. J., Quinn, D.G., Cohen, P.L. & Frelinger, J.A. Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection. Proc. Natl. Acad. Sci. USA 93, 14730–14735 (1996).

    Article  CAS  Google Scholar 

  22. Guidotti, L. G. & Chisari, F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    Article  CAS  Google Scholar 

  23. Ossendorp, F. et al. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5, 115–124 (1996).

    Article  CAS  Google Scholar 

  24. de Campos-Lima, P. O. et al. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science 260, 98–100 (1993).

    Article  CAS  Google Scholar 

  25. Reid, S.W. et al. Antagonist HIV-1 Gag peptides induce structural changes in HLA B8. J. Exp. Med. 184, 2279–2286 (1996).

    Article  CAS  Google Scholar 

  26. Rammensee, H.-G., Friede, T. & Stefanovic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  CAS  Google Scholar 

  27. Jameson, S.C., Carbone, F.R. & Bevan, M.J. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J. Exp. Med. 177, 1541–1550 (1993).

    Article  CAS  Google Scholar 

  28. Raulet, D.H. MHC class I-deficient mice. Adv. Immunol. 55, 381–421 (1994).

    Article  CAS  Google Scholar 

  29. Lehmann-Grube, F., Lohler, J., Utermöhlen, O. & Gegin, C. Antiviral immune responses of lymphocytic choriomeningitis virus-infected mice lacking CD8+ T lymphocytes because of disruption of the β2-microglobulin gene. J. Virol. 67, 332–339 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Perarnau, B. et al. Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and anti-lymphocytic choriomeningitis virus cytolytic responses. Eur. J. Immunol. 29, 1243–1252 (1999).

    Article  CAS  Google Scholar 

  31. Guidotti, L. G. et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999).

    Article  CAS  Google Scholar 

  32. Guidotti, L. G. et al. Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte. J. Exp. Med. 189, 1555–1564 (1999).

    Article  CAS  Google Scholar 

  33. Moskophidis, D. et al. Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J. Gen. Virol. 76, 381–391 (1995).

    Article  CAS  Google Scholar 

  34. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article  CAS  Google Scholar 

  35. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus- specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  36. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  Google Scholar 

  37. Varga, S.M. & Welsh, R.M. Detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 161, 3215–3218 (1998).

    CAS  Google Scholar 

  38. Kamperschroer, C. & Quinn, D.G. Quantification of epitope-specific MHC class-II-restricted T cells following lymphocytic choriomeningitis virus infection. Cell. Immunol. 193, 134–146 (1999).

    Article  CAS  Google Scholar 

  39. Moskophidis, D. & Zinkernagel, R.M. Immunobiology of cytotoxic T-cell escape mutants of lymphocytic choriomeningitis virus. J. Virol. 69, 2187–2193 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Siliciano, R.F. et al. Analysis of host-virus interactions in AIDS with anti-gp120 T cell clones: effect of HIV sequence variation and a mechanism for CD4+ cell depletion. Cell 54, 561–575 (1988).

    Article  CAS  Google Scholar 

  41. Harcourt, G.C., Garrard, S., Davenport, M.P., Edwards, A. & Phillips, R.E. HIV-1 variation diminishes CD4 T lymphocyte recognition. J. Exp. Med. 188, 1785–1793 (1998).

    Article  CAS  Google Scholar 

  42. Wang, H. & Eckels, D.D. Mutations in immunodominant T cell epitopes derived from the nonstructural 3 protein of hepatitis C virus have the potential for generating escape variants that may have important consequences for T cell recognition. J. Immunol. 162, 4177–4183 (1999).

    CAS  Google Scholar 

  43. Battegay, M. et al. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J. Virol. Methods 33, 191–198 (1991).

    Article  CAS  Google Scholar 

  44. Oxenius, A. et al. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J. Exp. Med. 183, 2209–2218 (1996).

    Article  CAS  Google Scholar 

  45. Zinkernagel, R.M., Leist, T., Hengartner, H. & Althage, A. Susceptibility to lymphocytic choriomeningitis virus isolates correlates directly with early and high cytotoxic T cell activity, as well as with footpad swelling reaction, and all three are regulated by H-2D. J. Exp. Med. 162, 2125–2141 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help in the generation of DNA sequence data of D. Zimmermann and his group. This work was supported by the Swiss National Science Foundation grants 31.50900.97 and 31.50884.97, and the Kanton of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Ciurea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciurea, A., Hunziker, L., Martinic, M. et al. CD4+ T-cell–epitope escape mutant virus selected in vivo. Nat Med 7, 795–800 (2001). https://doi.org/10.1038/89915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing