Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting gene expression to hypoxic tumor cells

Abstract

Solid tumors with areas of low oxygen tension (hypoxia) have a poor prognosis, as celts in this environment often survive radiation and chemotherapy. In this report we describe how this hypoxic environment can be used to activate heterologous gene expression driven by a hypoxia-responsive element (HRE), which interacts with the transcriptional complex hypoxia-inducible factor-1 (HIF-1). Our results demonstrate that the HIF-1/HRE system of gene regulation is active in hypoxic tumor cells and show the potential of exploiting tumor-specific conditions for the targeted expression of diagnostic or therapeutic genes in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kasahara, N., Dozy, A. & Kan, Y. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Manome, Y., Abe, M., Hagen, M., Fine, H. & Kufe, D. Enhancer sequences of the DF3 gene regulate expression of the herpes simplex virus thymidine kinase gene. Cancer Res. 54, 5408–5413 (1994).

    CAS  PubMed  Google Scholar 

  3. Hallahan, D.E. et al. Spatial and temporal control of gene therapy using ionizing radiation. Nature Med. 1, 786–791 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4–6 (1989).

    Article  Google Scholar 

  5. Vaupel, P.W. Oxygenation of solid tumors. in Drug Resistance in Oncology. (Teicher, B.A., ed.) 53–85 (Marcel Dekker, New York, 1993).

    Google Scholar 

  6. Hoeckel, M., Schlenger, K., Mitze, M., Schaeffer, U. & Vaupel, P. Hypoxia and radiation response in human tumors. Semin. Radiat. Oncol. 6, 1–8 (1996).

    Article  Google Scholar 

  7. Bunn, H.F. & Poyton, R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Dachs, G.U. & Stratford, I.J. The molecular response of mammalian Cells to hypoxia and the potential for exploitation in cancer therapy. Br. J. Cancer 74, S126–132 (1996).

    Google Scholar 

  9. Wang, G.L. & Semenza, C.L. General involvement of hypoxia-inducible factor-1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sd. USA 90, 4304–4308 (1993).

    Article  CAS  Google Scholar 

  10. Wang, G.L., Jiang, B.H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by Cellular O2 tension. Proc. Natl. Acad. Sd. USA 92, 5510–5514 (1995).

    Article  CAS  Google Scholar 

  11. Firth, J.D., Ebert, B.L., Pugh, C.W. & Ratcliffe, P.J. Oxygen regulated elements in the phosphoglycerate kinase-1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3′ enhancer. Proc. Natl. Acad. Sd. USA 91, 6496–6500 (1994).

    Article  CAS  Google Scholar 

  12. Poon, M.A. et al. Biochemical modulation of 5-fluorouracil Ñ evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J. din. Oncol. 7, 1407–1418 (1989).

    Article  CAS  Google Scholar 

  13. Mullen, C.A., Kilstrup, M. & Blaese, R.M. Transfer of the bacterial gene for cytosine deaminase to mammalian Cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc. Natl. Acad. Sd. USA 89, 33–37 (1992).

    Article  CAS  Google Scholar 

  14. Olive, P.L. Detection of hypoxia by measurement of DNA damage in individual Cells from spheroid and murine tumors exposed to bioreductive drugs. II. RSU1069. Br. J. Cancer 71, 537–542 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, G.E., Ahmed, I., Sheldon, P.W. & Stratford, I.J. Radiation sensitization and chemopotentiation: RSU-1069, a compound more efficient than misonidazole in vitro and in vivo. Br. J. Cancer 49, 571–577 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Connors, T.A. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 2, 702–709 (1995).

    CAS  PubMed  Google Scholar 

  17. Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Inducible expression of the erythropoietin 3′ enhancer in multiple Cell lines: Evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA 90, 2423–2427 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pugh, C.W., Ebert, B.L., Ebrahim, O. & Ratcliffe, P.J. Characterization of functional domains within the mouse erythropoietin 3′ enhancer conveying oxygen regulated responses different Cell-lines. Biochim. Biophys. Acta 1217, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Levy, A.P., Levy, N.S., Wegner, S. & Goldberg, M.A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333–13340 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Stein, I., Neeman, M., Shweiki, D., Itin, A. & Keshet, E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and co-regulation with other ischemia-induced genes. Mol. Cell. Biol. 15, 5363–5368 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Workman, P. & Stratford, I.J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 12, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Moulder, J.E., Dutreix, J., Rockwell, S. & Siemann, D.W. Applicability of animal tumor data to cancer-therapy in humans. Int. J. Rod. Oncol. Biol. Phys. 14, 913–927 (1988).

    Article  CAS  Google Scholar 

  24. Chaplin, D.J. & Hill, S.A. Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumors. Br. J. Cancer 71, 1210–1213 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watling, D. et al. Complementation by the protein tyrosine kinase JAK2 of a mutant Cell line defective in the interferon-γ (signal transduction pathway. Nature 366, 166–170 (1993)

    Article  CAS  PubMed  Google Scholar 

  26. Andersen, L., Kilstrup, M. & Neuhard, J., Pyrimidine, purine and nitrogen control of CD synthesis in Escherichia coli K12: Involvement of the glnLG and the purR genes in the regulation of codA expression. Arch. Microbiol. 152, 115–118 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Stratford, I.J. & Stephens, M.A. The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int. J. Radiat. Oncol. Biol. Phys. 16, 973–976 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dachs, G., Patterson, A., Firth, J. et al. Targeting gene expression to hypoxic tumor cells. Nat Med 3, 515–520 (1997). https://doi.org/10.1038/nm0597-515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0597-515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing