Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for packaging a large gene by the split AAV vectors through heterodimerization.
Figure 2: LacZ transgene expression from split AAV vectors in vitro and in vivo.
Figure 3: Characterization of the split AAV vector heterodimerization by RT–PCR and DNA-PCR.

References

  1. Kaplitt, M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet. 8, 148–154 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, X. et al. Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res. 756, 76–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Xiao, X. et al. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J. Virol. 74, 1436–1442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flotte, T.R. et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector Proc. Natl. Acad. Sci. USA 90, 10613–10617 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. During, M.J. et al. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther. 5, 820–827 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, R.O. et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nature Genet. 16, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Xiao, W., Beta, S., Liu, M.M., Taxelaar, J. & Wilson, J.M. Adeno-associated virus as a vector for liver directed gene therapy. J. Virol. 72, 10222– 10226 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewin, A.S. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nature Med. 4, 967–971 (1998); erratum: 4, 1081 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kay, M.A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 24, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Dong, J.Y., Fan, P.D. & Frizzell, R.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 7, 2101–2112 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman, E.P., Brown, R.H., Jr. & Kunkel, L.M. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nature Genet. 20, 31–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Flotte, T.R. et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J. Biol. Chem. 268, 3781–3790 ( 1993).

    CAS  PubMed  Google Scholar 

  16. Kotin, R.M. & Berns, K.I. Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology 170, 460–467 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Cheung, A.K., Hoggan, M.D., Hauswirth, W.W. & Berns, K.I. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33, 739–748 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McLaughlin, S.K., Collis, P., Hermonat, P.L. & Muzyczka, N. Adeno-associated virus general transduction vectors: Analysis of proviral structures. J. Virol. 62, 1963– 1973 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol . 72, 8568–8577 (1998); erratum: 73, 861 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Talmadge, K., Vamvakopoulos, N.C. & Fiddes, J.C. Evolution of the genes for the beta subunits of human chorionic gonadotropin and luteinizing hormone. Nature 307, 37–40 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirt, B. Selective extraction of polyoma DNA from infected mouse cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

  23. Xiao, X., Xiao, W., Li, J. & Samulski, R.J. A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J. Virol. 71, 941– 948 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Duan, D., Yan, Z., Yue, Y. & Engelhardt, J.F. Structural analysis of adeno-associated virus transduction circular intermediates. Virology 261, 8–14 ( 1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Van Dyke and J. Samulski for their critical reading and suggestions for the manuscript. This work is supported in part by National Institutes of Health grants R21 DK55966 from the National Institute of Diabetes and Digestive and Kidney Diseases, AR45967 and AR 45925 from the National Institute of Arthritis, Musculoskeletal and Skin Diseases, and an equipment grant from the Parent Project of USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Li, J. & Xiao, X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6, 599–602 (2000). https://doi.org/10.1038/75087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/75087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing