Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fas ligand (CD95 ligand) controls angiogenesis beneath the retina

Abstract

A principal cause of blindness is subretinal neovascularization associated with age-related macular degeneration. Excised neovascular membranes from patients with age-related macular degeneration demonstrated a pattern of Fas+ new vessels in the center of the vascular complex, surrounded by FasL+ retinal pigment epithelial cells. In a murine model, Fas (CD95)-deficient (lpr) and FasL-defective (gld) mice had a significantly increased incidence of neovascularization compared with normal mice. Furthermore, in gld mice there is massive subretinal neovascularization with uncontrolled growth of vessels. We found that cultured choroidal endothelial cells were induced to undergo apoptosis by retinal pigment epithelial cells through a Fas–FasL interaction. In addition, antibody against Fas prevented vascular tube formation of choroidal endothelial cells derived from the eye in a three-dimensional in vitro assay. Thus, FasL expressed on retinal pigment epithelial cells may control the growth and development of new subretinal vessels that can damage vision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subretinal neovascularization in age-related macular degeneration.
Figure 2: Incidence and area of laser-induced subretinal neovascular complexes.
Figure 3: Subretinal neovascularization in bone marrow chimeras.
Figure 4: Sensitivity of HCEC to Fas-mediated death.

Similar content being viewed by others

References

  1. D'Amore, P.A. Mechanisms of retinal and choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 35, 3974–3979 (1994).

    CAS  PubMed  Google Scholar 

  2. Freund, K.B., Yannuzzi, L.A. & Sorenson, J.A. . Age-related macular degeneration and choroidal neovascularization. Am. J. Ophthalmol. 115, 786– 79 (1993).

    Article  CAS  Google Scholar 

  3. Macular Photocoagulation Study Group. Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Arch. Ophthalmol. 115, 741 –747 (1997).

  4. Friedlander, M. et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 270, 1500– 1502 (1995).

    Article  CAS  Google Scholar 

  5. Friedlander, M. et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93, 9764–9769 (1996).

    Article  CAS  Google Scholar 

  6. Luna, J., Tobe T., Mousa, S.A., Reilly, T.M. & Campochiaro, P.A. Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab. Invest. 75, 563–573 (1996).

    CAS  PubMed  Google Scholar 

  7. Hammes, H.-P., Brownlee, M., Jonczyk, A., Sutter, A. & Preissner, K.T. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature Med. 2, 820–826 (1996).

    Article  CAS  Google Scholar 

  8. Yi, X. et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch. Clin. Exp. Ophthalmol. 235, 313–319 (1997).

    Article  CAS  Google Scholar 

  9. Pierce, E.A., Avery, R.L, Foley, E.D., Aiello, L.P. & Smith, L.E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA 92, 905– 909 (1995).

    Article  CAS  Google Scholar 

  10. Kvanta, A., Algvere, P.V., Berglin, L. & Seregard, S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 37, 1929–1934 ( 1996).

    CAS  PubMed  Google Scholar 

  11. Suda, T. et al. Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  Google Scholar 

  12. Rouvier, E., Luciani, M.-F. & Golstein, P. Fas involvement in Ca2+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993).

    Article  CAS  Google Scholar 

  13. Gratas, C. et al. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7, 863–869 (1997).

    Article  CAS  Google Scholar 

  14. O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counter attack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075–1082 (1996).

    Article  CAS  Google Scholar 

  15. Hahne, M. et al. Melanoma cell expression of Fas (Apo-1, CD95) ligand: implications for tumor immune escape. Science 274, 1363 –1366 (1996).

    Article  CAS  Google Scholar 

  16. Kondo, T. et al. Essential roles of Fas ligand in the development of hepatitis. Nature Med. 3, 409–413 (1997).

    Article  CAS  Google Scholar 

  17. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  18. Jorgensen, A. et al. Human retinal pigment epithelial cells-induced apoptosis in activated T-cell. Invest. Ophthal. Vis. Sci. 39, 1590–1599 (1998).

    CAS  PubMed  Google Scholar 

  19. Ferguson, T.A. & Griffith, T.S. A vision of cell death; insights into immune privilege. Immunol. Rev. 156, 167–184 (1997).

    Article  CAS  Google Scholar 

  20. Chan, C.C., Matteson, D.M., Li, Q., Whitcup, S.M. & Nussenblatt, R.B. Apoptosis in patients with posterior uveitis. Arch. Ophthalmol. 115, 1559–67 (1997).

    Article  CAS  Google Scholar 

  21. Hinton, D.R., He, S. & Lopez P.F. Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch. Ophthalmol. 116, 203– 9 (1998).

    Article  CAS  Google Scholar 

  22. Stuart, P.M. et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J. Clin. Invest. 99, 396–402 (1997).

    Article  CAS  Google Scholar 

  23. Miller, H., Miller, B., Ishibashi, T. & Ryan, S.J. Pathogenesis of laser-induced choroidal subretinal neovascularization. Invest. Ophthal. Vis. Sci. 31, 899– 908 (1990).

    CAS  PubMed  Google Scholar 

  24. Jackson, J.R., Seed, M.P., Kircher, C.H., Willoughby, D.A. & Winkler, J.D. The codependence of angiogenesis and chronic inflammation. FASEB J. 11, 457 –465 (1997).

    Article  CAS  Google Scholar 

  25. Nagata, S. & Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 16, 39– 43 (1995).

    Article  CAS  Google Scholar 

  26. Griffith, T.S., Yu, X., Herndon, J.M., Green, D.R. & Ferguson, T.A. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5, 7–16 (1996).

    Article  CAS  Google Scholar 

  27. Suhara, T. et al. Hydrogen peroxide induces up-regulation of Fas in human endothelial cells. J. Immunol. 160, 4042– 4047 (1998).

    CAS  PubMed  Google Scholar 

  28. Richardson, B.C., Lalwani, N.D., Johnson, K.J. & Marks, R.M. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur. J. Immunol. 24, 2640– 2645 (1994).

    Article  CAS  Google Scholar 

  29. Sata, M. & Walsh, K. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nature Med. 4, 1–6 (1998).

    Article  Google Scholar 

  30. Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 ( 1988).

    Article  CAS  Google Scholar 

  31. Kinsella, J.L., Grant, D.S., Weeks B.S. & Kleinman, H.K. Protein kinase C regulates endothelial tube formation on basement membrane matrix, Matrigel. Exp. Cell Res. 199, 56– 62 (1992).

    Article  CAS  Google Scholar 

  32. Kramer, R.H., Cheng, Y.F. & Clyman, R. Human microvascular endothelial cells use β1 and β3 integrin receptor complexes to attach to laminin. J. Cell. Biol. 11, 1233–1243 ( 1990).

    Article  Google Scholar 

  33. Scatena, M. et al. NF-kB mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141, 1083– 1093 (1998).

    Article  CAS  Google Scholar 

  34. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 ( 1995).

    Article  CAS  Google Scholar 

  35. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 ( 1997).

    Article  CAS  Google Scholar 

  36. Refaeli, Y. et al. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615– 623 (1998).

    Article  CAS  Google Scholar 

  37. Adachi, M. et al. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nature Genet. 11, 294–300 (1995).

    Article  CAS  Google Scholar 

  38. Watanabe, D., Suda, T,. Hashimoto, H. & Nagata, S. Constitutive activation of the FasL gene in mouse lymphoproliferative disorders. EMBO J. 14, 12–18 ( 1995).

    Article  CAS  Google Scholar 

  39. Nicosia, R.F. & Tuszynski, G.P. Matrix-bound thrombospondin promotes angiogenesis in vitro. J. Cell Biol. 124, 183–193 (1994).

    Article  CAS  Google Scholar 

  40. DeLisser, H.M. et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol. 151, 671–677 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Biancone, L. et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med. 186, 147–152 (1997).

    Article  CAS  Google Scholar 

  42. Sekine, C. et al. Fas-mediated stimulation induces IL-8 secretion by rheumatoid arthritis synoviocytes independently of CPP32-mediated apoptosis. Biochem. Biophys. Res. Commun. 228, 14– 20 (1996).

    Article  CAS  Google Scholar 

  43. Thilenius, A.R, Braun K. & Russell, J.H. Agonist antibody and Fas ligand mediate different sensitivity to death in the signaling pathways of Fas and cytoplasmic mutants. Eur. J. Immunol. 27, 1108–111 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Eye Institute grants EY06765 and EY08972 (T.A.F.), The Foundation for Fighting Blindness, Hunt Valley, Maryland (H.J.K.) and a Department of Ophthalmology and Visual Sciences grant from Research to Prevent Blindness, New York, New York. M.A.L. was supported by a Research to Prevent Blindness Medical Student Eye Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, H., Leibole, M., Tezel, T. et al. Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5, 292–297 (1999). https://doi.org/10.1038/6509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing