Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma

Abstract

Treatment with HIV-1 protease inhibitors (PI) is associated with a reduced incidence or regression of Kaposi sarcoma (KS). Here we show that systemic administration of the PIs indinavir or saquinavir to nude mice blocks the development and induces regression of angioproliferative KS-like lesions promoted by primary human KS cells, basic fibroblast growth factor (bFGF), or bFGF and vascular endothelial growth factor (VEGF) combined. These PIs also block bFGF or VEGF-induced angiogenesis in the chorioallantoic membrane assay with a potency similar to paclitaxel (Taxol). These effects are mediated by the inhibition of endothelial- and KS-cell invasion and of matrix metalloproteinase-2 proteolytic activation by PIs at concentrations present in plasma of treated individuals. As PIs also inhibit the in vivo growth and invasion of an angiogenic tumor-cell line, these data indicate that PIs are potent anti-angiogenic and anti-tumor molecules that might be used in treating non-HIV KS and in other HIV-associated tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIs block the formation and promote necrosis of angiogenic KS-like lesions induced by the inoculation of KS cells in nude mice.
Figure 2: PIs block the formation of bFGF-induced angiogenic lesions in nude mice.
Figure 3: PIs block the invasion but not the growth of endothelial and KS cells and inhibit the conversion of latent MMP-2 to its active form.

Similar content being viewed by others

References

  1. Ensoli, B., Sturzl, M. & Monini,P. Reactivation and role of HHV-8 in Kaposi's sarcoma initiation. Adv. Cancer Res. 81, 161–200 (2001).

    Article  CAS  Google Scholar 

  2. Sturzl, M., Zietz, C., Monini, P. & Ensoli, B. Human herpesvirus-8 and Kaposi's sarcoma: relationship with the multistep concept of tumorigenesis. Adv. Cancer Res. 81, 125–159 (2001).

    Article  CAS  Google Scholar 

  3. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1995).

    Article  Google Scholar 

  4. Monini, P. et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93, 4044–4058 (1999).

    CAS  PubMed  Google Scholar 

  5. Fiorelli,V. et al. γ-Interferon produced by CD8+ T cells infiltrating Kaposi's sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood 91, 956–967 (1998).

    CAS  PubMed  Google Scholar 

  6. Rabkin, C.S. et al. Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med. 336, 988–993 (1997).

    Article  CAS  Google Scholar 

  7. Ensoli, B. & Stürzl, M. Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. (eds. Sporn, M. & Vilcek, J.T.). Cytokine Growth Factor Rev. 9, 63–83 (1998).

    Article  CAS  Google Scholar 

  8. Ensoli, B. et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371, 674–680 (1994).

    Article  CAS  Google Scholar 

  9. Cornali, E. et al. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma. Am. J. Pathol. 149, 1851–1869 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Samaniego, F. et al. Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi's sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am. J. Pathol. 152, 1433–1443 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ascherl, G. et al. Infection with human immunodeficiency virus-1 increases expression of vascular endothelial-cell growth factor in T cells: implications for acquired immunodeficiency syndrome-associated vasculopathy. Blood 93, 4232–4241 (1999).

    CAS  PubMed  Google Scholar 

  12. Ascherl, G. et al. Serum concentrations of fibroblast growth factor 2 are increased in HIV type 1-infected patients and inversely related to survival probability. AIDS Res. Hum. Retroviruses 17, 1035–1039 (2001).

    Article  CAS  Google Scholar 

  13. Samaniego, F., Markham, P.D., Gendelman, R., Gallo, R.C. & Ensoli, B. Inflammatory cytokines induce endothelial cells to produce and release basic fibroblast growth factor and to promote Kaposi's sarcoma-like lesions in nude mice. J. Immunol. 158, 1887–1894 (1997).

    CAS  PubMed  Google Scholar 

  14. Barillari, G. et al. Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi's sarcoma via induction of basic fibroblast growth factor and the αvβ3 integrin. J. Immunol. 163, 1929–1935 (1999).

    CAS  PubMed  Google Scholar 

  15. Ensoli, B. et al. Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J. Clin. Invest. 94, 1736–1746 (1994).

    Article  CAS  Google Scholar 

  16. Masood, R. et al. Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc. Natl. Acad. Sci. USA 94, 979–984 (1997).

    Article  CAS  Google Scholar 

  17. Nakamura, S., Murakami-Mori, K., Rao, N., Weich, H.A. & Rajeev, B. Vascular endothelial growth factor is a potent angiogenic factor in AIDS-associated Kaposi's sarcoma-derived spindle cells. J. Immunol. 158, 4992–5001 (1997).

    CAS  PubMed  Google Scholar 

  18. Barillari, G. et al. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the α5β1 and αvβ3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 94, 663–672 (1999).

    CAS  PubMed  Google Scholar 

  19. Toschi, E. et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 tat protein and basic fibroblast growth factor. Mol. Biol. Cell 12, 2934–2946 (2001).

    Article  CAS  Google Scholar 

  20. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  21. International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J. Natl. Cancer Inst. 92, 1823–1830 (2000).

  22. Lebbe, C. et al. Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. AIDS 12, F45–F49 (1998).

    Article  CAS  Google Scholar 

  23. Cattelan, A.M. et al. Regression of AIDS-related Kaposi's sarcoma following antiretroviral therapy with protease inhibitors: biological correlates of clinical outcome. Eur. J. Cancer 35, 1809–1815 (1999).

    Article  CAS  Google Scholar 

  24. Deeks, S.G., Smith,M., Holodniy, M. & Kahn, J.O. HIV-1 protease inhibitors. A review for clinicians. JAMA 277, 145–153 (1997).

    Article  CAS  Google Scholar 

  25. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl. Acad. Sci. USA 95, 13120–13124 (1998).

    Article  CAS  Google Scholar 

  26. Carr, A., Samaras, K., Chisholm, D.J. & Cooper, D.A. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 351, 1881–1883 (1998).

    Article  CAS  Google Scholar 

  27. Cassone, A. et al. In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J. Infect. Dis. 180, 448–453 (1999).

    Article  CAS  Google Scholar 

  28. Weichold, F.F. et al. HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J. Hum. Virol. 2, 261–269 (1999).

    CAS  PubMed  Google Scholar 

  29. Gruber, A., Wheat, J.C., Kuhen, K.L., Looney, D.J. & Wong-Staal, F. Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. J. Biol. Chem. 276, 47840–47843 (2001).

    Article  CAS  Google Scholar 

  30. Tovo, P.A. Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects. AIDS 14, 743–744 (2000).

    Article  CAS  Google Scholar 

  31. Chavan, S., Kodoth, S., Pahwa, R. & Pahwa, S. The HIV protease inhibitor Indinavir inhibits cell-cycle progression in vitro in lymphocytes of HIV-infected and uninfected individuals. Blood 98, 383–389 (2001).

    Article  CAS  Google Scholar 

  32. Liang, J.S. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: A potential mechanism for protease inhibitor-induced hyperlipidemia. Nature Med. 7, 1327–1331 (2001).

    Article  CAS  Google Scholar 

  33. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol. 17, 768–774 (1999).

    Article  CAS  Google Scholar 

  34. Sgadari, C. et al. Mechanism of paclitaxel activity in Kaposi's sarcoma. J. Immunol. 165, 509–517 (2000).

    Article  CAS  Google Scholar 

  35. Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40, 1189–1197 (1996).

    CAS  PubMed  Google Scholar 

  36. Belotti, D. et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 2, 1843–1849 (1996).

    CAS  PubMed  Google Scholar 

  37. Stetler-Stevenson, W.G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest 103, 1237–1241 (1999).

    Article  CAS  Google Scholar 

  38. Hidalgo, M. & Eckhardt, S.G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst. 93, 178–193 (2001).

    Article  CAS  Google Scholar 

  39. Edgell, C.J., McDonald, C.C. & Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80, 3734–3737 (1983).

    Article  CAS  Google Scholar 

  40. Albini, A. et al. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nature Med. 2, 1371–1375 (1996).

    Article  CAS  Google Scholar 

  41. Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R.C. & Wong-Staal, F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84–86 (1990).

    Article  CAS  Google Scholar 

  42. Ledru, E. et al. Alteration of tumor necrosis factor-α T-cell homeostasis following potent antiretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome. Blood 95, 3191–3198 (2000).

    CAS  PubMed  Google Scholar 

  43. Osman, M. et al. Identification of human herpesvirus 8-specific cytotoxic T-cell responses. J. Virol. 73, 6136–6140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Q.J. et al. CD8+ cytotoxic T lymphocyte responses to lytic proteins of human herpes virus 8 in human immunodeficiency virus type 1-infected and -uninfected individuals. J. Infect. Dis. 182, 928–932 (2000).

    Article  CAS  Google Scholar 

  45. Kedes, D.H., & Ganem, D. Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J. Clin. Invest 99, 2082–2086 (1997).

    Article  CAS  Google Scholar 

  46. Bower, M. et al. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi's sarcoma. AIDS 13, 2105–2111 (1999).

    Article  CAS  Google Scholar 

  47. Torre-Cisneros, J. et al. Patterns of lymphotropic herpesvirus viraemia in HIV-infected patients with Kaposi's sarcoma treated with highly active antiretroviral therapy and liposomal daunorubicin. AIDS 14, 2215–2217 (2000).

    Article  CAS  Google Scholar 

  48. Cooper, D.A. et al. Zidovudine in persons with asymptomatic HIV infection and CD4+ cell counts greater than 400 per cubic millimeter. The European-Australian Collaborative Group. N. Engl. J. Med. 329, 297–303 (1993).

    Article  CAS  Google Scholar 

  49. Real, F.X. & Krown, S.E. Spontaneous regression of Kaposi's sarcoma in patients with AIDS. N. Engl. J. Med. 313, 1659 (1985).

    CAS  PubMed  Google Scholar 

  50. Vaccher, E., di Gennaro, G., Nasti, G., Juzbasic, S. & Tirelli, U. HAART is effective as anti-Kaposi's sarcoma therapy only after remission has been induced by chemotherapy. J. Acquir. Immune. Defic. Syndr. 22, 407–408 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Moracci, R. Marinelli and C. Ciccolella for technical help; and A. Lippa and A. Carinci for editorial assistance. I.B. was a recipient of a fellowship from the Federazione Italiana per la Ricerca sul Cancro (FIRC). This study was supported by grants from the Italian Ministry of Health (IX AIDS project) and the Associazione Italiana per la Ricerca sul Cancro (AIRC) to B.E. and to F.B., and from the Italian Ministry of Education, University and Research (MIUR) to G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ensoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgadari, C., Barillari, G., Toschi, E. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 8, 225–232 (2002). https://doi.org/10.1038/nm0302-225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0302-225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing