Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis

Abstract

Demyelination alone has been considered sufficient for development of neurological deficits following central nervous system (CNS) disease. However, extensive demyelination is not always associated with clinical deficits in patients with multiple sclerosis (MS), the most common primary demyelinating disease in humans. We used the Theiler's murine encephalomyelitis virus model of demyelination to investigate the role of major histocompatibility complex (MHC) class I and class II gene products In the development of functional and neurophysiological deficits following demyelination. We measured spontaneous clinical activity by two independent assays and recorded hind-limb motor-evoked potentials in infected class I-deficient and class 11-deficient mice of an identical genetic background as well as in highly susceptible SJL/J mice. The results show that despite a similar distribution and extent of demyelinated lesions in all mice, only class I-deficient mice were functionally normal. We propose that the mechanism by which demyelinated class I-deficient mice maintain neurologic function results from increased sodium channel densities and the relative preservation of axons. These findings are the first to implicate a role for MHC class I in the development of neurological deficits following demyelination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rodriguez, M., Oleszak, E. & Leibowitz, J. Theiler's murine encephalomyelitis: A model of demyelination and persistence of virus. Crit. Rev. Immunol. 7, 325–365 (1987).

    CAS  PubMed  Google Scholar 

  2. Fiette, L., Aubert, C., Brahic, M. & Rossi, C.P. Theiler's virus infection of β2-mi-croglobulin-deficient mice. J. Virol. 67, 589–592 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pullen, L.C., Miller, S.D., Dal Canto, M.C. & Kim, B.S. Class I-deficient resistant mice intracerebrally inoculated with Theiler's virus show an increased T cell response to viral antigens and susceptibility to demyelination. Eur. J. Immunol. 23, 2287–2293 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez, M., et al. Abrogation of resistance to Theiler's-induced demyelination in H–2b mice deficient in β2-microglobulin. J. Immunol. 151, 266–276 (1993).

    CAS  PubMed  Google Scholar 

  5. Njenga, M.K., et al. Theiler's virus persistence and demyelination in major histo-compatibility complex class II-deficient mice. J. Virol. 70, 1729–1737 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez, M., Leibowitz, J. & David, C.S. Susceptibility to Theiler's virus-induced demyelination: Mapping of the gene within the H–2D region. J. Exp. Med. 163, 620–631 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez, M. & David, C.S. Demyelination induced by Theiler's virus: Influence of the H–2 haplotype. J. Immunol. 135, 2145–2148 (1985).

    CAS  PubMed  Google Scholar 

  8. Foster, R.E., Whalen, C.C. & Waxman, S.G. Reorganization of the axon membrane in demyelinated peripheral nerve fibers: Morphological evidence. Science 210, 661–663 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Bostock, H., Hall, S.M. & Smith, K.J. Demyelinated axons can form ‘nodes’ prior to remyelination.). Physiol. (Lond.) 308, 21P–23P (1980).

    Google Scholar 

  10. Smith, K.J., Bostock, H. & Hall, S.M. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J. Neurol. Sci. 54, 13–31 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Waxman, S.G. Demyelination in spinal cord injury and multiple sclerosis: What can we do to enhance functional recovery? J. Neurotrauma 9, S105–S117 (1992).

    PubMed  Google Scholar 

  12. Rodriguez, M. & Sriram, S. Successful therapy of Theiler's virus-induced demyelination (DA strain) with monoclonal anti-Lyt-2 antibody. J. Immunol. 140, 2950–2955 (1988).

    CAS  PubMed  Google Scholar 

  13. Miller, D.J., Rivera-Quiñones, C., Njenga, M.K., Leibowitz, J. & Rodriguez, M. Spontaneous CNS remyelination in p2 microglobulin-deficient mice following virus-induced demyelination. J. Neurosci. 15, 8345–8352 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, D.J., Njenga, M.K., Murray, P.D., Leibowitz, J. & Rodriguez, M. A monoclonal natural autoantibody that promotes remyelination suppresses central nervous system inflammation and increases virus expression after Theiler's virus-induced demyelination. Int. Immunol. 8, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Brinkmeier, H., Kaspar, A., Wietholter, H. & Rudel, R. Interleukin-2 inhibits sodium currents in human muscle cells. Pfluegers Arch. 420, 621–623 (19??).

  16. Black, J.A., Felts, P., Smith, K.J., Kocksis, J.D. & Waxman, S.C. Distribution of sodium channels in chronically demyelinated spinal cord axons: Immuno-structural localization and electrophysiological observations. Brain Res. 544, 59–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. McDonald, W.I. & Sears, T.A. Effect of demyelination on conduction in the central nervous system. Brain 93, 583–598 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. Filippi, M., et al. Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: A follow-up study. Neurology 45, 255–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert, J.J. & Sadler, M. Unsuspected multiple sclerosis. Arch. Neurol. 40, 533–536 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Mackay, R.P. & Hirano, A. Forms of benign multiple sclerosis: Report of two “clinically silent” cases discovered at autopsy. Arch. Neurol. 17, 588–600 (1967).

    Article  CAS  PubMed  Google Scholar 

  21. Moll, C., Mourre, C., Lazdunsky, M. & Ulrich, J. Increase of sodium channels in demyelinated lesions of multiple sclerosis. Brain Res. 556, 311–316 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Hauser, S.L., et al. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 19, 578–587 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Sibley, W.A., Bamford, C.R. & Clark, K. Clinical viral infections and multiple sclerosis. Lancet 1, 1313–1315 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. The IFNβ Multiple Sclerosis Group. Interferon beta-1 b is effective in relapsing-re-mitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

  25. Iuliano, B.A., Schmelzer, J.D., Thiemann, R.L., Low, P.A. & Rodriguez, M. Motor and somatosensory-evoked potentials in mice infected with Theiler's murine encephalomyelitis virus. J. Neurol. Sci. 123, 186–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Dugandzija-Novakovic, S., Koszowski, A.G., Levinson, S.R. & Shrager, P. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J. Neurosci. 15, 492–503 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mourre, C., Widmann, C. & Lazdunski, M. Saxitoxin-sensitive Na+ channels: Presynaptic localization in cerebellum and hippocampus of neurological mutant mice. Brain Res. 533, 196–202 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Robb, R.A., et al. ANALYZE: A comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Comput. Med. Imag. Graphics 13, 433–454 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Quiñones, C., McGavern, D., Schmelzer, J. et al. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med 4, 187–193 (1998). https://doi.org/10.1038/nm0298-187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing