Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current understanding of the human microbiome

Subjects

This article has been updated

Abstract

Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities that are associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes and by mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this review, we focus on studies in humans to describe these challenges and propose strategies that leverage existing knowledge to move rapidly from correlation to causation and ultimately to translation into therapies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The human microbiome is highly personalized.
Figure 2: The dynamics of the human microbiome.
Figure 3: Iterative experiment and observation to understand and develop microbiome therapies.

Change history

  • 12 June 2018

    In the version of this paper originally published, the text was truncated after the first four paragraphs. The full HTML version of the paper now appears correctly.

References

  1. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    CAS  PubMed  Google Scholar 

  2. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970–5975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frank, D.N. et al. Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ni, J. et al. A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci. Transl. Med. 9, eaah6888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kostic, A.D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

    Article  PubMed  Google Scholar 

  9. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21, 786–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert, J.A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Punt, C.J.A., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 14, 235–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Debelius, J. et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 17, 217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).

  14. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodrich, J.K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ridaura, V.K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Turnbaugh, P.J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA 107, 7503–7508 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karczewski, J., Poniedziałek, B., Adamski, Z. & Rzymski, P. The effects of the microbiota on the host immune system. Autoimmunity 47, 494–504 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1897 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Toole, P.W. Changes in the intestinal microbiota from adulthood through to old age. Clin. Microbiol. Infect. 18 (Suppl. 4), 44–46 (2012).

    Article  PubMed  Google Scholar 

  24. Koenig, J.E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  25. Weng, M. & Walker, W.A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 4, 203–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Maynard, C.L., Elson, C.O., Hatton, R.D. & Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Knights, D. et al. Rethinking “enterotypes”. Cell Host Microbe 16, 433–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeffery, I.B., Claesson, M.J., O'Toole, P.W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Grice, E.A. & Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caporaso, J.G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kort, R. et al. Shaping the oral microbiota through intimate kissing. Microbiome 2, 41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lazarevic, V., Whiteson, K., Hernandez, D., François, P. & Schrenzel, J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11, 523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. David, L.A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Maier, T.V. et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio. 8, e01343–e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannigan, G.D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6, e01578–e15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, B., Forney, L.J. & Ravel, J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Romero, R. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiao, B. et al. Predictive value of the composition of the vaginal microbiota in bacterial vaginosis, a dynamic study to identify recurrence-related flora. Sci. Rep. 6, 26674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albenberg, L.G. & Wu, G.D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146, 1564–1572 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, G.D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, C. et al. Dietary Modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine 2, 968–984 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Modi, S.R., Collins, J.J. & Relman, D.A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dethlefsen, L. & Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    Article  PubMed  Google Scholar 

  50. Maurice, C.F., Haiser, H.J. & Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trasande, L. et al. Infant antibiotic exposures and early-life body mass. Int. J. Obes. (Lond). 37, 16–23 (2013).

    Article  CAS  Google Scholar 

  52. Song, S.J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. von Mutius, E. The microbial environment and its influence on asthma prevention in early life. J. Allergy Clin. Immunol. 137, 680–689 (2016).

    Article  PubMed  Google Scholar 

  54. Stein, M.M. et al. Innate immunity and asthma risk in Amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cook, M.D. et al. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol. Cell Biol. 94, 158–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Benedict, C. et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol. Metab. 5, 1175–1186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karl, J.P. et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G559–G571 (2017).

    Article  PubMed  Google Scholar 

  58. Ying, S. et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS One 10, e0141842 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng, W. et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage. Sci. Rep. 5, 9131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zozaya, M. et al. Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome 4, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fei, N. & Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Knight, R. et al. Unlocking the potential of metagenomics through replicated experimental design. Nat. Biotechnol. 30, 513–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl. Acad. Sci. USA 107, 6477–6481 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Flores, G.E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Livanos, A.E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Larsen, P.E., Field, D. & Gilbert, J.A. Predicting bacterial community assemblages using an artificial neural network approach. Nat. Methods 9, 621–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Larsen, P.E. & Dai, Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience 4, 42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Browne, H.P. et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943. e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mueller, N.T. et al. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. Int. J. Obes. (Lond). 41, 497–501 (2017).

    Article  CAS  Google Scholar 

  78. Raveh-Sadka, T. et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. eLife 4, 4 (2015).

    Article  CAS  Google Scholar 

  79. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Costea, P.I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Alivisatos, A.P. et al. MICROBIOME. A unified initiative to harness Earth's microbiomes. Science 350, 507–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Biteen, J.S. et al. Tools for the microbiome: nano and beyond. ACS Nano 10, 6–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Luckey, T.D. Introduction to intestinal microecology. Am. J. Clin. Nutr. 25, 1292–1294 (1972).

    Article  CAS  PubMed  Google Scholar 

  85. Rosner, J.L. Ten times more microbial cells than body cells in humans? Microbe 9, 47 (2014).

    Google Scholar 

  86. Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kassam, Z., Lee, C.H., Yuan, Y. & Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).

    Article  PubMed  Google Scholar 

  90. Knights, D., Parfrey, L.W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe 10, 292–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Walters, W.A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sze, M.A. & Schloss, P.D. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 7 (2016).

  93. Sahin, M. & Sur, M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350, aab3897 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. McDonald, D. et al. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microb. Ecol. Health Dis. 26, 26555 (2015).

    PubMed  Google Scholar 

  95. Kang, D.-W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hsiao, E.Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Snijders, A.M. et al. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat. Microbiol. 2, 16221 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Uusitalo, U. et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 170, 20–28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Blaser, M.J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Arrieta, M.-C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fujimura, K.E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many of the studies described here in our laboratories were supported by the National Institutes of Health, National Science Foundation, Department of Energy and the Alfred P. Sloan Foundation. We thank numerous members of our laboratories for constructive criticism on drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilbert, J., Blaser, M., Caporaso, J. et al. Current understanding of the human microbiome. Nat Med 24, 392–400 (2018). https://doi.org/10.1038/nm.4517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4517

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing