Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

D-mannose induces regulatory T cells and suppresses immunopathology

Abstract

D-mannose, a C-2 epimer of glucose, exists naturally in many plants and fruits, and is found in human blood at concentrations less than one-fiftieth of that of glucose. However, although the roles of glucose in T cell metabolism, diabetes and obesity are well characterized, the function of D-mannose in T cell immune responses remains unknown. Here we show that supraphysiological levels of D-mannose safely achievable by drinking-water supplementation suppressed immunopathology in mouse models of autoimmune diabetes and airway inflammation, and increased the proportion of Foxp3+ regulatory T cells (Treg cells) in mice. In vitro, D-mannose stimulated Treg cell differentiation in human and mouse cells by promoting TGF-β activation, which in turn was mediated by upregulation of integrin αvβ8 and reactive oxygen species generated by increased fatty acid oxidation. This previously unrecognized immunoregulatory function of D-mannose may have clinical applications for immunopathology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: D-mannose induces Treg cell differentiation in vitro and in vivo.
Figure 2: D-mannose induces Treg cell differentiation via activation of TGF-β.
Figure 3: Integrin αvβ8 and ROS are required for D-mannose-mediated TGF-β1 activation and Treg cell generation.
Figure 4: D-mannose suppresses type 1 diabetes in NOD mice.
Figure 5: Treg cells and TGF-β are involved in D-mannose-mediated suppression of autoimmune diabetes in NOD mice.
Figure 6: D-mannose induces antigen-specific Treg cells and suppresses ovalbumin-induced airway inflammation in BALB/cJ mice.

References

  1. 1

    Etchison, J.R. & Freeze, H.H. Enzymatic assay of D-mannose in serum. Clin. Chem. 43, 533–538 (1997).

    CAS  PubMed  Google Scholar 

  2. 2

    Schneider, A. et al. Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice. Nat. Med. 18, 71–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Alton, G. et al. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology 8, 285–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    de Lonlay, P. & Seta, N. The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim. Biophys. Acta 1792, 841–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Michaels, E.K., Chmiel, J.S., Plotkin, B.J. & Schaeffer, A.J. Effect of D-mannose and D-glucose on Escherichia coli bacteriuria in rats. Urol. Res. 11, 97–102 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Kranjčec, B., Papeš, D. & Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J. Urol. 32, 79–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Schaeffer, A.J., Chmiel, J.S., Duncan, J.L. & Falkowski, W.S. Mannose-sensitive adherence of Escherichia coli to epithelial cells from women with recurrent urinary tract infections. J. Urol. 131, 906–910 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    MacIver, N.J., Michalek, R.D. & Rathmell, J.C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Read, S., Malmström, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Huehn, J., Polansky, J.K. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9, 83–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chen, W. & Konkel, J.E. Development of thymic Foxp3+ regulatory T cells: TGF-β matters. Eur. J. Immunol. 45, 958–965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Konkel, J.E., Jin, W., Abbatiello, B., Grainger, J.R. & Chen, W. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl. Acad. Sci. USA 111, E465–E473 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Zhang, Y., Feng, X.H. & Derynck, R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394, 909–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Nakatsukasa, H. et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4+ T cells. Nat. Immunol. 16, 1077–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Chen, W. & Konkel, J.E. TGF-β and 'adaptive' Foxp3+ regulatory T cells. J. Mol. Cell Biol. 2, 30–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Baecher-Allan, C., Brown, J.A., Freeman, G.J. & Hafler, D.A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Chen, W. & Wahl, S.M. TGF-β: receptors, signaling pathways and autoimmunity. Curr. Dir. Autoimmun. 5, 62–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Massagué, J. & Chen, Y.G. Controlling TGF-β signaling. Genes Dev. 14, 627–644 (2000).

    PubMed  Google Scholar 

  29. 29

    Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Worthington, J.J. et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42, 903–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Travis, M.A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Edwards, J.P., Thornton, A.M. & Shevach, E.M. Release of active TGF-β1 from the latent TGF-β1/GARP complex on T regulatory cells is mediated by integrin β8. J. Immunol. 193, 2843–2849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14, 715–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Amarnath, S., Dong, L., Li, J., Wu, Y. & Chen, W. Endogenous TGF-β activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25 T cells. Retrovirology 4, 57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Hildeman, D.A., Mitchell, T., Kappler, J. & Marrack, P. T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575–581 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Sena, L.A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Bulua, A.C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Rosca, M.G. et al. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61, 2074–2083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Seifert, E.L., Estey, C., Xuan, J.Y. & Harper, M.E. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J. Biol. Chem. 285, 5748–5758 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Akirav, E.M. et al. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc. Natl. Acad. Sci. USA 108, 19018–19023 (2011).

    Article  PubMed  Google Scholar 

  42. 42

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).

  43. 43

    Walter, D.M. et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol. 167, 4668–4675 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Takaoka, A. et al. A critical role for mouse CXC chemokine(s) in pulmonary neutrophilia during Th type 1-dependent airway inflammation. J. Immunol. 167, 2349–2353 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    Article  CAS  Google Scholar 

  46. 46

    Wu, L. & Derynck, R. Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev. Cell 17, 35–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Chang, C.H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Travis, M.A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Davis, J.A. & Freeze, H.H. Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse. Biochim. Biophys. Acta 1528, 116–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Derynck, R. & Akhurst, R.J. Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat. Cell Biol. 9, 1000–1004 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Mayatepek, E., Schröder, M., Kohlmüller, D., Bieger, W.P. & Nützenadel, W. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr. 86, 1138–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Feuerer, M., Shen, Y., Littman, D.R., Benoist, C. & Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31, 654–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kasagi, S. et al. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci. Transl. Med. 6, 241ra78 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Zanvit, P. et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6, 8424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Konkel, J.E. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12, 312–319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, NIDCR. We thank E. Shevach (NIAID, NIH, Bethesda, Maryland, USA) for providing the Itgb8f/fCD4-Cre mice, and C. Benoist and D. Mathis (Harvard Medical School, Boston, Massachusetts, USA) for providing the NOD-Foxp3DTR mice. We also thank the NIDCR flow cytometry core for support.

Author information

Affiliations

Authors

Contributions

D.Z. designed and performed most of the experiments, analyzed and interpreted the data, and contributed to the writing of the manuscript. C.C. and X.J. designed and conducted experiments, analyzed data, and contributed to the writing of the manuscript. S.K., R.W., J.E.K., H.N., P.Z., N.G. and W.J. performed experiments. Q.C., L.S. and Z.-J.C. provided support and/or critical scientific input. W.J.C. conceived of and directed the research, designed the experiments, and wrote the paper.

Corresponding author

Correspondence to WanJun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–15. (PDF 2965 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chia, C., Jiao, X. et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med 23, 1036–1045 (2017). https://doi.org/10.1038/nm.4375

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing