Basal cell carcinoma (BCC), the most common human cancer, results from aberrant activation of the Hedgehog signaling pathway1. Although most cases of BCC are sporadic, some forms are inherited, such as Bazex–Dupré–Christol syndrome (BDCS)—a cancer-prone genodermatosis with an X-linked, dominant inheritance pattern2. We have identified mutations in the ACTRT1 gene, which encodes actin-related protein T1 (ARP-T1), in two of the six families with BDCS that were examined in this study. High-throughput sequencing in the four remaining families identified germline mutations in noncoding sequences surrounding ACTRT1. These mutations were located in transcribed sequences encoding enhancer RNAs (eRNAs)3,4,5 and were shown to impair enhancer activity and ACTRT1 expression. ARP-T1 was found to directly bind to the GLI1 promoter, thus inhibiting GLI1 expression, and loss of ARP-T1 led to activation of the Hedgehog pathway in individuals with BDCS. Moreover, exogenous expression of ACTRT1 reduced the in vitro and in vivo proliferation rates of cell lines with aberrant activation of the Hedgehog signaling pathway. In summary, our study identifies a disease mechanism in BCC involving mutations in regulatory noncoding elements and uncovers the tumor-suppressor properties of ACTRT1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Primary accessions



  1. 1.

    Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer 8, 743–754 (2008).

  2. 2.

    et al. The gene for Bazex–Dupré–Christol syndrome maps to chromosome Xq. J. Invest. Dermatol. 105, 87–91 (1995).

  3. 3.

    & Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

  4. 4.

    , , & Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39, 170–182 (2014).

  5. 5.

    , , & The emerging roles of eRNAs in transcriptional regulatory networks. RNA Biol. 11, 106–110 (2014).

  6. 6.

    , & Follicular atrophoderma, baso-cellular proliferations and hypotrichosis. Ann. Dermatol. Syphiligr. (Paris) 93, 241–254 (1966).

  7. 7.

    , & Congenital hypotrichosis and milia: report of a large family suggesting X-linked dominant inheritance. Am. J. Med. Genet. 52, 487–490 (1994).

  8. 8.

    , & Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

  9. 9.

    & Conserved non-coding elements and cis regulation: actions speak louder than words. Development 140, 1385–1395 (2013).

  10. 10.

    , , & Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

  11. 11.

    et al. ChIP–Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

  12. 12.

    et al. Functionally conserved enhancers with divergent sequences in distant vertebrates. BMC Genomics 16, 882 (2015).

  13. 13.

    et al. ChIP–seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

  14. 14.

    et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

  15. 15.

    & Decoding enhancers using massively parallel reporter assays. Genomics 106, 159–164 (2015).

  16. 16.

    et al. Tissue-specific RNA expression marks distant-acting developmental enhancers. PLoS Genet. 10, e1004610 (2014).

  17. 17.

    et al. Functional genetic screens for enhancer elements in the human genome using CRISPR–Cas9. Nat. Biotechnol. 34, 192–198 (2016).

  18. 18.

    et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

  19. 19.

    et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet. 14, 78–81 (1996).

  20. 20.

    et al. Novel actin-related proteins Arp-T1 and Arp-T2 as components of the cytoskeletal calyx of the mammalian sperm head. Exp. Cell Res. 279, 177–187 (2002).

  21. 21.

    & Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2, 38–46 (2011).

  22. 22.

    , & Actin-related proteins in the nucleus: life beyond chromatin remodelers. Curr. Opin. Cell Biol. 22, 383–391 (2010).

  23. 23.

    et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat. 29, 617–622 (2008).

  24. 24.

    , , , & Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc. Natl. Acad. Sci. USA 108, 12758–12763 (2011).

  25. 25.

    et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog–Gli pathway. Nat. Med. 16, 1429–1433 (2010).

  26. 26.

    et al. Role of CRD-BP in the growth of human basal cell carcinoma cells. J. Invest. Dermatol. 134, 1718–1724 (2014).

  27. 27.

    et al. Germline DNA copy number variation in familial and early-onset breast cancer. Breast Cancer Res. 14, R24 (2012).

  28. 28.

    et al. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer 120, 537–547 (2014).

  29. 29.

    et al. Targeting hedgehog–GLI-2 pathway in osteosarcoma. J. Orthop. Res. 31, 502–509 (2013).

  30. 30.

    et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clin. Exp. Metastasis 28, 437–449 (2011).

  31. 31.

    & Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr. Opin. Genet. Dev. 42, 56–67 (2017).

  32. 32.

    et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

  33. 33.

    & Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 108, 547–552 (2017).

  34. 34.

    et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

  35. 35.

    , & Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol. Cancer 15, 43 (2016).

  36. 36.

    et al. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol. Cancer 16, 42 (2017).

  37. 37.

    et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602 (2013).

  38. 38.

    & Regulatory enhancer-core-promoter communication via transcription factors and cofactors. Trends Genet. 32, 801–814 (2016).

  39. 39.

    , , & Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 37, 3–9 (2017).

Download references


The authors wish to thank P. Guigue, A. Vincent-Salomon, L. Fuhrmann, M. Oufadem, S. Thomas, S. Petit, F. Mouchrik, V. Geoffroy, A. Julien, O. Duchamp de Lageneste, L. Galmiche-Rolland, J. Cottineau, J. Rossignol, S. Saunier and D. Pouly for technical assistance and advice; M. Sahbatou for performing linkage analysis; M.-E. Huang for providing cell lines for this study; A. Schmitt and J.-M. Masse at the Cochin Imaging Facility (CNRS UMR 8104) for their assistance and help with transmission electron microscopy; C. Bole-Feysot at the Genomic Platform of IMAGINE Institute for acquiring transcriptomic data; M. Garfa-Traoré, N. Goudin and R. Desvaux at the Cell Imaging Platform of IMAGINE Institute for technical assistance and advice; P. Guigue-Rodet and V. Martin-Bouret for providing skin biopsies from some individuals with BDCS; and M.-C. Hors-Cayla and J.-L. Bonafé for initiating genetic research on BDCS. We are grateful to all subjects and their families for their participation in the study. H.E. was supported by TUBITAK (grant no. 112S398). H.-S.P., E.C., F.K., D.B., M.H. and D.H. were supported by the Swiss National Science Foundation, the Placide Nicod Foundation and the Dind Cottier Foundation. This work was funded by the Association pour la Recherche contre le Cancer and the Société Française de Dermatologie. This work was supported by funding from the Agence Nationale de la Recherche (ANR-10-IAHU-01).

Author information

Author notes

    • Zakia Belaid-Choucair
    •  & Hülya Kayserili

    These authors contributed equally to this work.


  1. Paris Descartes University, Sorbonne Paris Cité, Paris, France.

    • Elodie Bal
    • , Zakia Belaid-Choucair
    • , Marine Madrange
    • , Smail Hadj-Rabia
    • , Cindy Le Gall
    • , Francine Côté
    • , Sylvain Hanein
    • , Christine Bodemer
    • , Olivier Hermine
    • , Arnold Munnich
    •  & Asma Smahi
  2. IMAGINE Institute, INSERM UMR 1163, Paris, France.

    • Elodie Bal
    • , Zakia Belaid-Choucair
    • , Marine Madrange
    • , Smail Hadj-Rabia
    • , Cindy Le Gall
    • , Francine Côté
    • , Sylvain Hanein
    • , Christine Bodemer
    • , Olivier Hermine
    • , Arnold Munnich
    •  & Asma Smahi
  3. Department of Dermatology, Lausanne University Hospital, Hôpital de Beaumont, Lausanne, Switzerland.

    • Hyun-Sook Park
    • , Elena Chiticariu
    • , Francois Kuonen
    • , Daniel Bachmann
    • , Marcel Huber
    •  & Daniel Hohl
  4. Department of Hematology, Hôpital Necker–Enfants Malades, Paris, France.

    • Zakia Belaid-Choucair
    • , Francine Côté
    •  & Olivier Hermine
  5. Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.

    • Hülya Kayserili
  6. Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.

    • Hülya Kayserili
    • , Rasim Özgür Rosti
    •  & Ayca Dilruba Aslanger
  7. Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, Paris, France.

    • Magali Naville
    •  & Hugues Roest Crollius
  8. CNRS, UMR 8197, Paris, France.

    • Magali Naville
    •  & Hugues Roest Crollius
  9. INSERM U1024, Paris, France.

    • Magali Naville
    •  & Hugues Roest Crollius
  10. Department of Dermatology, Hôpital Necker–Enfants Malades, Paris, France.

    • Smail Hadj-Rabia
    •  & Christine Bodemer
  11. Plateforme Bio-informatique, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS 3633, Paris, France.

    • Nicolas Cagnard
  12. Laboratory of Genome Maintenance, Rockefeller University, New York, New York, USA.

    • Rasim Özgür Rosti
  13. Department of Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, the Netherlands.

    • Quinten Waisfisz
  14. GR-Ex Laboratory of Excellence, IMAGINE Institute, Paris, France.

    • Olivier Hermine
  15. Centre Référence Nationale pour les Mastocytoses, Hôpital Necker–Enfants Malades, Paris, France.

    • Olivier Hermine
  16. Centre de référence pour les maladies rares de la peau, Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.

    • Fanny Morice-Picard
    •  & Alain Taieb
  17. Department of Dermatology, Centre Hospitalier Universitaire Nord, Saint-Etienne, France.

    • Bruno Labeille
  18. Department of Dermatology, Hôpital Avicenne, Bobigny, France.

    • Frédéric Caux
  19. Department of Dermatology, Centre de Référence des Maladies Rares de la Peau, Hôpital Larrey, Toulouse, France.

    • Juliette Mazereeuw-Hautier
  20. Department of Medical Genetics, Hôpital de la Timone, Marseille, France.

    • Nicole Philip
    •  & Nicolas Levy
  21. AMU-INSERM, UMR_S910, Faculté de Médecine de Marseille, Marseille, France.

    • Nicole Philip
    •  & Nicolas Levy
  22. INSERM U1035, Université de Bordeaux, Bordeaux, France.

    • Alain Taieb
  23. Department of Dermatology, Hôpital Cochin, Paris, France.

    • Marie-Françoise Avril
  24. Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.

    • Denis J Headon
  25. Genoscope (CEA), CNRS UMR 8030, University of Evry, Evry, France.

    • Gabor Gyapay
  26. Institute for Research on Cancer and Aging, CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France.

    • Thierry Magnaldo
  27. Department of Pathological Anatomy, Hôpital Necker–Enfants Malades, Paris, France.

    • Sylvie Fraitag
  28. Department of Dermatology, Centre Hospitalier Universitaire, Hôpital du Bocage, Dijon, France.

    • Pierre Vabres


  1. Search for Elodie Bal in:

  2. Search for Hyun-Sook Park in:

  3. Search for Zakia Belaid-Choucair in:

  4. Search for Hülya Kayserili in:

  5. Search for Magali Naville in:

  6. Search for Marine Madrange in:

  7. Search for Elena Chiticariu in:

  8. Search for Smail Hadj-Rabia in:

  9. Search for Nicolas Cagnard in:

  10. Search for Francois Kuonen in:

  11. Search for Daniel Bachmann in:

  12. Search for Marcel Huber in:

  13. Search for Cindy Le Gall in:

  14. Search for Francine Côté in:

  15. Search for Sylvain Hanein in:

  16. Search for Rasim Özgür Rosti in:

  17. Search for Ayca Dilruba Aslanger in:

  18. Search for Quinten Waisfisz in:

  19. Search for Christine Bodemer in:

  20. Search for Olivier Hermine in:

  21. Search for Fanny Morice-Picard in:

  22. Search for Bruno Labeille in:

  23. Search for Frédéric Caux in:

  24. Search for Juliette Mazereeuw-Hautier in:

  25. Search for Nicole Philip in:

  26. Search for Nicolas Levy in:

  27. Search for Alain Taieb in:

  28. Search for Marie-Françoise Avril in:

  29. Search for Denis J Headon in:

  30. Search for Gabor Gyapay in:

  31. Search for Thierry Magnaldo in:

  32. Search for Sylvie Fraitag in:

  33. Search for Hugues Roest Crollius in:

  34. Search for Pierre Vabres in:

  35. Search for Daniel Hohl in:

  36. Search for Arnold Munnich in:

  37. Search for Asma Smahi in:


E.B. designed and conducted most of the experiments and analyzed all the data. H.-S.P., E.C., F.K., D.B., M.H. and D.H. performed experiments on UW-BCC1 cells. Z.B.-C. contributed to the in vivo studies. H.K. collected BDCS families, provided clinical data, and performed and carried out analysis for linkage studies. M.N. and H.R.C. searched for CNEs and performed in silico analyses of the region around the ACTRT1 gene. M.M. assisted with all experiments. N.C. performed transcriptomic and Ingenuity analyses. C.L.G. contributed to sequencing of candidate genes. F.C. contributed to flow cytometry analyses and cell fractionation experiments. S.H. contributed to electron microscopy analyses. S.F. performed immunohistochemical analyses of skin biopsies. O.H. contributed to discussions on some aspects of the project. R.O.R. and A.D.A. extracted DNA from families E and F and performed linkage analyses. Q.W. helped with some in silico analysis on Turkish families. S.H-R., C.B., F.M.-P., B.L., F.C., J.M.-H., N.P., N.L., A.T. and M.-F.A. provided well-characterized patient samples. T.M. contributed to discussions and provided tools for experiments on the Hedgehog signaling pathway. G.G. performed targeted high-throughput sequencing. D.J.H. contributed to discussions on some aspects of the project. P.V. provided well-characterized patient samples and participated in drafting the manuscript. A.M. contributed to the study design and participated in drafting the manuscript. A.S. designed the study and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Elodie Bal or Asma Smahi.

Supplementary information

PDF files

  1. 1.

    Supplementary Figures and Table

    Supplementary Figures 1–19, Supplementary Table 1 and Supplementary Note

  2. 2.

    Life Sciences Reporting Summary

  3. 3.

    Supplementary Data

    Uncropped Immunoblots

About this article

Publication history






Further reading