Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gpr124 is essential for blood–brain barrier integrity in central nervous system disease

Abstract

Although blood–brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt–β-catenin signaling. Constitutive activation of Wnt–β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Endothelial Gpr124 deficiency induces rapid BBB breakdown and hemorrhagic transformation following brain ischemia and reperfusion.
Figure 2: Activation of endothelial Wnt–β-catenin signaling rescues the hemorrhagic-stroke phenotype of Gpr124-deficient mice.
Figure 3: Gpr124–Wnt signaling regulates endothelial tight junction, pericyte and extracellular matrix following stroke.
Figure 4: Endothelial Gpr124 deficiency increases tumor hemorrhage and reduces survival in experimental glioblastoma.
Figure 5: Endothelial activation of Wnt–β-catenin signaling reduces tumor hemorrhage and edema in endothelial-specific Gpr124-deleted mice with glioblastoma.
Figure 6: Gpr124–Wnt signaling increases BBB integrity in glioblastoma by regulating tight-junction protein, pericyte coverage, Glut1 and the ECM.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Obermeier, B., Daneman, R. & Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Engelhardt, B. & Liebner, S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res. 355, 687–699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dejana, E. & Nyqvist, D. News from the brain: the GPR124 orphan receptor directs brain-specific angiogenesis. Sci. Transl. Med. 2, 58ps53 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. McCarty, J.H. et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132, 165–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Proctor, J.M., Zang, K., Wang, D., Wang, R. & Reichardt, L.F. Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J. Neurosci. 25, 9940–9948 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vallon, M., Chang, J., Zhang, H. & Kuo, C.J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 71, 3489–3506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stenman, J.M. et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Daneman, R. et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 106, 641–646 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ye, X. et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139, 285–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Y. et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paes, K.T. et al. Frizzled 4 is required for retinal angiogenesis and maintenance of the blood-retina barrier. Invest. Ophthalmol. Vis. Sci. 52, 6452–6461 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, Y. et al. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Invest. 124, 3825–3846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Junge, H.J. et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/β-catenin signaling. Cell 139, 299–311 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330, 985–989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cullen, M. et al. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc. Natl. Acad. Sci. USA 108, 5759–5764 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anderson, K.D. et al. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 108, 2807–2812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chandana, E.P. et al. Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice. BMC Dev. Biol. 10, 84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanhollebeke, B. et al. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4, e06489 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  21. Liebner, S. et al. Wnt/β-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 183, 409–417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lippmann, E.S. et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paolinelli, R. et al. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8, e70233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tran, K.A. et al. Endothelial β-catenin signaling is required for maintaining adult blood-brain barrier integrity and central nervous system homeostasis. Circulation 133, 177–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, W. et al. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats. Mol. Neurobiol. 53, 7028–7036 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, C. et al. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia. Sci. Rep. 5, 16151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reis, M. et al. Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J. Exp. Med. 209, 1611–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. & Nathans, J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev. Cell 31, 248–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Posokhova, E. et al. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Reports 10, 123–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Maier, C.M., Hsieh, L., Crandall, T., Narasimhan, P. & Chan, P.H. Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann. Neurol. 59, 929–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. McCullough, L. et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 24, 257–268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Xiong, X. et al. IL-4 is required for sex differences in vulnerability to focal ischemia in mice. Stroke 46, 2271–2276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ritzel, R.M., Capozzi, L.A. & McCullough, L.D. Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm. Behav. 63, 238–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Daneman, R. et al. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5, e13741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moro, E. et al. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366, 327–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  39. Lindahl, P., Johansson, B.R., Levéen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Bell, R.D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daneman, R., Zhou, L., Kebede, A.A. & Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Hall, C.N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, J. et al. PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 32, 353–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi, T., Noshita, N., Sugawara, T. & Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 23, 166–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Carmeliet, P. & Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Bürgi, S. et al. In vivo imaging of hypoxia-inducible factor regulation in a subcutaneous and orthotopic GL261 glioma tumor model using a reporter gene assay. Mol. Imaging http://dx.doi.org/10.2310/7290.2014.00029 (2014).

  50. Airley, R. et al. Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin. Cancer Res. 7, 928–934 (2001).

    CAS  PubMed  Google Scholar 

  51. Ulrich, F. et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 143, 1055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, H. et al. The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice. J. Neurochem. 115, 385–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Luhmann, U.F. et al. Vascular changes in the cerebellum of Norrin /Ndph knockout mice correlate with high expression of Norrin and Frizzled-4. Eur. J. Neurosci. 27, 2619–2628 (2008).

    Article  PubMed  Google Scholar 

  54. Ye, X., Smallwood, P. & Nathans, J. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr. Patterns 11, 151–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nitta, T. et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, Z.L. et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J. Cell Biol. 202, 381–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gould, D.B. et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winkler, E.A. et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuo, C.J. et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl. Acad. Sci. USA 98, 4605–4610 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beck, A.H. et al. 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS One 5, e8768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Kuo laboratory, J. Yang and P. Han for helpful comments. We thank P. Chu (Stanford Histology Core Facility), J. Perrino (Stanford Electron Microscopy Facility) and C. Crumpton, T. Knaak, B. Gomez, O. Herman and M. Bigos (Stanford Shared FACS Facility). FACS sorting and analysis used instruments in the Shared FACS Facility, obtained using NIH S10 Shared Instrument Grant (S10RR025518-01, S10RR027431-01) to the Stanford Shared FACS Facility. We thank M. Edwards (Department of Neurosurgery, Stanford University) for providing the human glioblastoma specimens. We thank R. Adams (Max Planck Institute for Molecular Biomedicine) for providing the Cdh5-CreER mice. We thank the National Cancer Institute–DCTD Repository for providing the GL261 cell line. J.C. was supported by an American Heart Association Postdoctoral Fellowship (15POST23020039) and M.R.M. was supported by the Stanford Medical Scientist Training Program (NIGMS GM07365). J.H.Z. was supported by a Howard Hughes Medical Institute Medical Research Fellows Program grant. H.Y.C. was supported by NIH grant P50-HG007735. This work was also supported by American Heart Association Innovative Science Award 12PILT12850014, a Stanford Stroke Collaborative Action Network Pilot Grant and NIH grants R01HL074267, R01NS064517, U01DK085527 and R01CA158528 to C.J.K.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and M.R.M. designed and performed experiments, analyzed the data and wrote the manuscript. C.M., X.L., K. Y., L.X., L.L. and J.W. performed the tMCAO and tumor cell implantation surgeries, performed experiments and analyzed data. J.W.K, V.R., M.V., C.K., J.H.Z., A.T.M., S.G., T.R., R.L., F.K., X.H., J.Y., S.-H.C., A.D.B., L.D. and D.C.C. performed experiments and analyzed data. L.Y. and X.W. analyzed the RNA-seq data. S.H.C., L.D.S., M.S., P.C., H.Y.C., R.G.G. and K.A. designed experiments and analyzed the data. C.J.K. conceived and supervised the project, designed experiments, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Calvin J Kuo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–16 and Supplementary Tables 1–3 (PDF 10947 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Mancuso, M., Maier, C. et al. Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nat Med 23, 450–460 (2017). https://doi.org/10.1038/nm.4309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4309

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer