Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy


Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell–mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN–related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A type I IFN signature in cancer cells is necessary for the therapeutic efficacy of doxorubicin.
Figure 2: TLR3-TICAM1 signaling is required for type I IFN release by cancer cells.
Figure 3: Role of CXCL10 in the anti-neoplastic activity of anthracyclines.
Figure 4: Improvement of chemotherapeutic responses by exogenous type I IFN.
Figure 5: MX1 expression in BC predicts pCR to neoadjuvant anthracycline-based chemotherapy.
Figure 6: Predictive value of MX1 expression in patients with BC treated with adjuvant chemotherapy.

Accession codes


Gene Expression Omnibus


  1. 1

    Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  2. 2

    Tang, D., Kang, R., Coyne, C.B., Zeh, H.J. & Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L.H. The unfolded protein response: integrating stress signals through the stress sensor IRE1a. Physiol. Rev. 91, 1219–1243 (2011).

    CAS  PubMed  Google Scholar 

  4. 4

    Levine, B., Mizushima, N. & Virgin, H.W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010).

    CAS  PubMed  Google Scholar 

  6. 6

    Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8, 151–160 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  PubMed  Google Scholar 

  10. 10

    Ma, Y. et al. Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  12. 12

    Apetoh, L. et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev. 220, 47–59 (2007).

    CAS  PubMed  Google Scholar 

  13. 13

    Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    CAS  PubMed  Google Scholar 

  14. 14

    González-Navajas, J.M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Ma, Y. et al. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res. 74, 436–445 (2014).

    CAS  PubMed  Google Scholar 

  16. 16

    Lim, E.S., Wu, L.I., Malik, H.S. & Emerman, M. The function and evolution of the restriction factor Viperin in primates was not driven by lentiviruses. Retrovirology 9, 55 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hovanessian, A.G. et al. Identification of 69-kd and 100-kd forms of 2–5A synthetase in interferon-treated human cells by specific monoclonal antibodies. EMBO J. 6, 1273–1280 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Horisberger, M.A. Interferons, Mx genes, and resistance to influenza virus. Am. J. Respir. Crit. Care Med. 152, S67–S71 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA–induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  Google Scholar 

  20. 20

    Tareen, S.U. & Emerman, M. Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition. Virology 409, 113–120 (2011).

    CAS  PubMed  Google Scholar 

  21. 21

    Sen, G.C. & Fensterl, V. Crystal structure of IFIT2 (ISG54) predicts functional properties of IFITs. Cell Res. 22, 1407–1409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Honda, K. et al. IRF-7 is the master regulator of type-I interferon–dependent immune responses. Nature 434, 772–777 (2005).

    CAS  PubMed  Google Scholar 

  23. 23

    Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    CAS  PubMed  Google Scholar 

  24. 24

    Brahmer, J.R. et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Foloppe, J. et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther. 15, 1361–1371 (2008).

    CAS  PubMed  Google Scholar 

  26. 26

    Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    CAS  PubMed  Google Scholar 

  27. 27

    Goubau, D., Deddouche, S. & Reis, E.S.C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Crawford, M.A. et al. Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection. PLoS Pathog. 6, e1001199 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Iwamoto, T. et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J. Natl. Cancer Inst. 103, 264–272 (2011).

    CAS  PubMed  Google Scholar 

  30. 30

    Tabchy, A. et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin. Cancer Res. 16, 5351–5361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hatzis, C. et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. J. Am. Med. Assoc. 305, 1873–1881 (2011).

    CAS  Google Scholar 

  32. 32

    Desmedt, C. et al. Multifactorial approach to predicting resistance to anthracyclines. J. Clin. Oncol. 29, 1578–1586 (2011).

    CAS  PubMed  Google Scholar 

  33. 33

    Horak, C.E. et al. Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin. Cancer Res. 19, 1587–1595 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Popovici, V. et al. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res. 12, R5 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Allred, D.C., Harvey, J.M., Berardo, M. & Clark, G.M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11, 155–168 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Arriagada, R. Results of two randomized trials evaluating adjuvant anthracycline-based chemotherapy in 1146 patients with early breast cancer. Acta Oncol. 44, 458–466 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Spielmann, M. et al. Trastuzumab for patients with axillary-node–positive breast cancer: results of the FNCLCC-PACS 04 trial. J. Clin. Oncol. 27, 6129–6134 (2009).

    CAS  PubMed  Google Scholar 

  38. 38

    MacMicking, J.D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    CAS  Google Scholar 

  40. 40

    Tatematsu, M., Nishikawa, F., Seya, T. & Matsumoto, M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat. Commun. 4, 1833 (2013).

    PubMed  Google Scholar 

  41. 41

    Shatz, M., Menendez, D. & Resnick, M.A. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res. 72, 3948–3957 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Bernard, J.J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    CAS  PubMed  Google Scholar 

  43. 43

    Van, D.N. et al. Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics. FASEB J. 26, 3188–3198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ellermeier, J. et al. Therapeutic efficacy of bifunctional siRNA combining TGF-β1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 73, 1709–1720 (2013).

    CAS  PubMed  Google Scholar 

  45. 45

    Salaun, B. et al. TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res. 71, 1607–1614 (2011).

    CAS  PubMed  Google Scholar 

  46. 46

    Conforti, R. et al. Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res. 70, 490–500 (2010).

    CAS  PubMed  Google Scholar 

  47. 47

    Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  48. 48

    Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    CAS  PubMed  Google Scholar 

  49. 49

    Lenci, R.E. et al. Influence of genetic variants in type I interferon genes on melanoma survival and therapy. PLoS ONE 7, e50692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Fuertes, M.B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Diamond, M.S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    CAS  PubMed  Google Scholar 

  53. 53

    Hong, M. et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 71, 6997–7009 (2011).

    CAS  PubMed  Google Scholar 

  54. 54

    Eggermont, A.M. et al. Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur. J. Cancer 48, 218–225 (2012).

    CAS  PubMed  Google Scholar 

  55. 55

    Ruffell, B. et al. Leukocyte composition of human breast cancer. Proc. Natl. Acad. Sci. USA 109, 2796–2801 (2012).

    CAS  PubMed  Google Scholar 

  56. 56

    Gu-Trantien, C. et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123, 2873–2892 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    CAS  PubMed  Google Scholar 

  58. 58

    Weichselbaum, R.R. et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl. Acad. Sci. USA 105, 18490–18495 (2008).

    CAS  PubMed  Google Scholar 

  59. 59

    Chan, S.R. et al. STAT1-deficient mice spontaneously develop estrogen receptor α–positive luminal mammary carcinomas. Breast Cancer Res. 14, R16 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Yang, X. et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Sheehan, K.C. et al. Blocking monoclonal antibodies specific for mouse IFN-α/β receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J. Interferon Cytokine Res. 26, 804–819 (2006).

    CAS  PubMed  Google Scholar 

  62. 62

    Uppaluri, R. et al. Prolongation of cardiac and islet allograft survival by a blocking hamster anti-mouse CXCR3 monoclonal antibody. Transplantation. 86, 137–147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Gresser, I., Tovey, M.G., Maury, C. & Bandu, M.T. Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex, Moloney sarcoma, vesicular stomatitis, Newcastle disease, and influenza viruses. J. Exp. Med. 144, 1316–1323 (1976).

    CAS  PubMed  Google Scholar 

  64. 64

    Tovey, M.G., Begon-Lours, J. & Gresser, I. A method for the large scale production of potent interferon preparations. Proc. Soc. Exp. Biol. Med. 146, 809–815 (1974).

    CAS  PubMed  Google Scholar 

  65. 65

    Gaj, T., Guo, J., Kato, Y., Sirk, S.J. & Barbas, C.F. III. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9, 805–807 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Galluzzi, L. et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 16, 1093–1107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Galluzzi, L. et al. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Reports 2, 257–269 (2012).

    CAS  PubMed  Google Scholar 

  68. 68

    Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).

    CAS  PubMed  Google Scholar 

  69. 69

    Criollo, A. et al. Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12, 3–18 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Schultze, J.L. & Eggle, D. IlluminaGUI: graphical user interface for analyzing gene expression data generated on the Illumina platform. Bioinformatics 23, 1431–1433 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Antonov, J. et al. Molecular risk assessment of BIG 1–98 participants by expression profiling using RNA from archival tissue. BMC Cancer 10, 37 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Gong, Y. et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol. 8, 203–211 (2007).

    CAS  Google Scholar 

Download references


We acknowledge L. Galluzzi for help with preparation of the manuscript. We thank P. Rameau, Y. Lécluse and M. Sanchez for assistance with FACS experiments, G. Schiavoni and G. D'Agostino (Istituto Superiore di Sanità) for recombinant Ifn-α1, our colleagues from the Gustave Roussy Cancer Center and the Istituto Superiore di Sanità animal facilities, P. Gonin, M. Macchia and E. Cardarelli. We acknowledge P. Vielh for his help with immunohistochemical analyses and G. Stoll for his support in statistical analyses. G.K. and L.Z. are supported by the Ligue Nationale contre le Cancer (Equipes labellisées), Site de Recherche Intégrée sur le Cancer (IRIC) Socrates, the ISREC Foundation, Agence Nationale pour la Recherche (ANR AUTOPH, ANR Emergence), the European Commission (ArtForce), a European Research Council Advanced Investigator Grant (to G.K.), the Fondation pour la Recherche Médicale (FRM), the Institut National du Cancer (INCa), the Fondation de France, Cancéropôle Ile-de-France, the Fondation Bettencourt-Schueller, the LabEx Immuno-Oncology and the Paris Alliance of Cancer Research Institutes. A.S. is supported by Ligue Nationale contre le Cancer. D.H. was supported by Fondation Association pour la Recherche sur le Cancer. M.J.S. was supported by a National Health and Medical Research Council (NH&MRC) Australia Fellowship and Program Grant and a grant from the Victorian Cancer Agency. E.P. and L.B. were supported by Associazione Italiana Ricerca contro il Cancro (AIRC) (MFAG_13058). C.P. was supported by the Deutsche Forschungsgemeinschaft (DFG) PF809/1-1. C.E. was supported by Boerhinger Ingelheim. F.A. was supported by Association Vie et Cancer. J.A. was supported by Institut national du Cancer et la Direction Générale de l′Offre de Soins-INSERM 6043.

Author information




A.S., T.Y., E.V., K.C., I.V., E.E.B., C.R., L.F., D.H., L. Aymeric, Y.M., M.N.-S., O.K., J.L.S., V.L.S., G.Z., P.S., F.U., M.P., C.E., C.P., M.J.S. and M.T.C. performed experiments. M.D., V.Q., R.C., J.-P.S., L.P., S.D., A.E. and F.A. enrolled patients in clinical trials. F.B., L.B. and E.P. directed part of A.S.'s experiments and supported the fees of the animal work. F.B., T.T., M.E.B., G.U. and R.D.S. provided reagents. L.Z. daily directed the two first authors and conceived the study. L.Z., F.A. and G.K. wrote the paper. V.P.-C. processed the TMAs and performed immunostaining of the biopsies and TMAs. A.G. and D.P.E. performed statistical analyses. J.A., S.L., L. Arnould, J.C., M.-C.D., F.P.-L. and M.L.-T. were the pathologists who interpreted the MX1 and TLR3 staining. X.P. and L.F. performed the experiments with transgenic oncolytic viruses.

Corresponding authors

Correspondence to Guido Kroemer or Laurence Zitvogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–6 (PDF 1245 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sistigu, A., Yamazaki, T., Vacchelli, E. et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20, 1301–1309 (2014).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing