Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements


Next-generation sequencing of DNA from human tumors or individuals with developmental abnormalities has led to the discovery of a process we term chromoanagenesis, in which large numbers of complex rearrangements occur at one or a few chromosomal loci in a single catastrophic event. Two mechanisms underlie these rearrangements, both of which can be facilitated by a mitotic chromosome segregation error to produce a micronucleus containing the chromosome to undergo rearrangement. In the first, chromosome shattering (chromothripsis) is produced by mitotic entry before completion of DNA replication within the micronucleus, with a failure to disassemble the micronuclear envelope encapsulating the chromosomal fragments for random reassembly in the subsequent interphase. Alternatively, locally defective DNA replication initiates serial, microhomology-mediated template switching (chromoanasynthesis) that produces local rearrangements with altered gene copy numbers. Complex rearrangements are present in a broad spectrum of tumors and in individuals with congenital or developmental defects, highlighting the impact of chromoanagenesis on human disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mechanism for the creation of complex chromosomal rearrangements by NHEJ after chromosome shattering.
Figure 2: Mitotic errors produce micronuclei and subsequent chromoanagenesis.
Figure 3: Mechanism for complex chromosomal rearrangements as a result of FoSTes and MMBIR.
Figure 4: Chromoanagenesis may create oncogenic lesions.


  1. 1

    Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    CAS  PubMed  Google Scholar 

  2. 2

    Stephens, P.J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Campbell, P.J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kloosterman, W.P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    CAS  PubMed  Google Scholar 

  7. 7

    Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kloosterman, W.P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012).

    CAS  PubMed  Google Scholar 

  10. 10

    Eldredge, N. & Gould, S.J. Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiol. 82, 82–115 (1972).

    Google Scholar 

  11. 11

    Chen, J.M., Ferec, C. & Cooper, D.N. Transient hypermutability, chromothripsis and replication-based mechanisms in the generation of concurrent clustered mutations. Mutat. Res. 750, 52–59 (2012).

    CAS  PubMed  Google Scholar 

  12. 12

    Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Gordon, D.J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    CAS  PubMed  Google Scholar 

  14. 14

    Holland, A.J. & Cleveland, D.W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    CAS  PubMed  Google Scholar 

  16. 16

    Thompson, S.L. & Compton, D.A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Gascoigne, K.E. & Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    CAS  PubMed  Google Scholar 

  18. 18

    Hoffelder, D.R. et al. Resolution of anaphase bridges in cancer cells. Chromosoma 112, 389–397 (2004).

    PubMed  Google Scholar 

  19. 19

    Terradas, M., Martin, M., Hernandez, L., Tusell, L. & Genesca, A. Nuclear envelope defects impede a proper response to micronuclear DNA lesions. Mutat. Res. 729, 35–40 (2012).

    CAS  PubMed  Google Scholar 

  20. 20

    Terradas, M., Martin, M., Tusell, L. & Genesca, A. DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair (Amst.) 8, 1225–1234 (2009).

    CAS  Google Scholar 

  21. 21

    Rao, P.N. & Johnson, R.T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159–164 (1970).

    CAS  PubMed  Google Scholar 

  22. 22

    Johnson, R.T. & Rao, P.N. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature 226, 717–722 (1970).

    CAS  PubMed  Google Scholar 

  23. 23

    Sperling, K. & Rao, P.N. The phenomenon of premature chromosome condensation: its relevance to basic and applied research. Humangenetik 23, 235–258 (1974).

    CAS  PubMed  Google Scholar 

  24. 24

    Meyerson, M. & Pellman, D. Cancer genomes evolve by pulverizing single chromosomes. Cell 144, 9–10 (2011).

    CAS  PubMed  Google Scholar 

  25. 25

    Holland, A.J. & Cleveland, D.W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Zhang, W., Peng, G., Lin, S.Y. & Zhang, P. DNA damage response is suppressed by the high cyclin-dependent kinase 1 activity in mitotic mammalian cells. J. Biol. Chem. 286, 35899–35905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Janssen, A., van der Burg, M., Szuhai, K., Kops, G.J. & Medema, R.H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    CAS  PubMed  Google Scholar 

  28. 28

    Tubio, J.M. & Estivill, X. Cancer: When catastrophe strikes a cell. Nature 470, 476–477 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Tang, H.L. et al. Cell survival, DNA damage and oncogenic transformation following a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Stanulla, M., Wang, J., Chervinsky, D.S., Thandla, S. & Aplan, P.D. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol. Cell. Biol. 17, 4070–4079 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Stanulla, M., Chhalliyil, P., Wang, J., Jani-Sait, S.N. & Aplan, P.D. Mechanisms of MLL gene rearrangement: site-specific DNA cleavage within the breakpoint cluster region is independent of chromosomal context. Hum. Mol. Genet. 10, 2481–2491 (2001).

    CAS  PubMed  Google Scholar 

  32. 32

    Terradas, M., Martin, M., Tusell, L. & Genesca, A. Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat. Res. 705, 60–67 (2010).

    CAS  PubMed  Google Scholar 

  33. 33

    Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kloosterman, W.P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Lee, J.A., Carvalho, C.M. & Lupski, J.R.A. DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Hastings, P.J., Ira, G. & Lupski, J.R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    CAS  PubMed  Google Scholar 

  40. 40

    Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Wu, C. et al. Poly-gene fusion transcripts and chromothripsis in prostate cancer. Genes Chromosom. Cancer doi:10.1002/gcc.21999 (2012).

  42. 42

    Northcott, P.A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Magrangeas, F., Avet-Loiseau, H., Munshi, N.C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118, 675–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Molenaar, J.J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    CAS  PubMed  Google Scholar 

  45. 45

    Wahl, G.M. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49, 1333–1340 (1989).

    CAS  PubMed  Google Scholar 

  46. 46

    Mao, J.H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    CAS  PubMed  Google Scholar 

  47. 47

    Kemp, Z. et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 65, 11361–11366 (2005).

    CAS  PubMed  Google Scholar 

  48. 48

    Kastan, M.B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Yap, T.A., Gerlinger, M., Futreal, P.A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4, 127ps110 (2012).

    Google Scholar 

  51. 51

    Ganem, N.J., Godinho, S.A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Silkworth, W.T., Nardi, I.K., Scholl, L.M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Maher, C.A. & Wilson, R.K. Chromothripsis and human disease: piecing together the shattering process. Cell 148, 29–32 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We apologize to all whose work was not cited because of space restrictions. This work was supported by a grant (GM29513) from the US National Institutes of Health to D.W.C., who receives salary support from the Ludwig Institute for Cancer Research. A.J.H. is supported by a Leukemia & Lymphoma Society special fellowship.

Author information



Corresponding authors

Correspondence to Andrew J Holland or Don W Cleveland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holland, A., Cleveland, D. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18, 1630–1638 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing