Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma

A Corrigendum to this article was published on 06 December 2012

This article has been updated


The discovery of potent inhibitors of the BRAF proto-oncogene has revolutionized therapy for melanoma harboring mutations in BRAF, yet NRAS-mutant melanoma remains without an effective therapy. Because direct pharmacological inhibition of the RAS proto-oncogene has thus far been unsuccessful, we explored systems biology approaches to identify synergistic drug combination(s) that can mimic RAS inhibition. Here, leveraging an inducible mouse model of NRAS-mutant melanoma, we show that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activates apoptosis but not cell-cycle arrest, which is in contrast to complete genetic neuroblastoma RAS homolog (NRAS) extinction, which triggers both of these effects. Network modeling pinpointed cyclin-dependent kinase 4 (CDK4) as a key driver of this differential phenotype. Accordingly, combined pharmacological inhibition of MEK and CDK4 in vivo led to substantial synergy in therapeutic efficacy. We suggest a gradient model of oncogenic NRAS signaling in which the output is gated, resulting in the decoupling of discrete downstream biological phenotypes as a result of incomplete inhibition. Such a gated signaling model offers a new framework to identify nonobvious coextinction target(s) for combined pharmacological inhibition in NRAS-mutant melanomas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of the iNRAS mouse melanoma model and experimental design.
Figure 2: RAS-specific module (RSM) genes are highly enriched for cell-cycle functions.
Figure 3: Cellular proliferation is inhibited by NRASQ61K extinction but not MEK inhibition.
Figure 4: The Cdk4-Rb axis regulates the RAS-specific pathways.
Figure 5: The combination MEK and CDK4/6 inhibition is synergistic in vivo.
Figure 6: NRAS-MAPK activity differentially regulates apoptosis and proliferation.

Accession codes



Gene Expression Omnibus

Change history

  • 20 November 2012

     In the version of this article initially published, the formula to calculate the mutual information matrix, which appears in the last page of the Online Methods, was missing a log multiplier. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. CancerNatl. Rev. 7, 295–308 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Jakob, J.A. et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118, 4013–4023 (2011).

    Google Scholar 

  3. 3

    Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Gilmartin, A.G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989–1000 (2011).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Flaherty, K.T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. New Engl. J. Med. 367, 107–114 (2012).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Falchook, G.S. et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 13, 782–789 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kirkwood, J.M. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin. Cancer Res. 18, 555–567 (2012).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Ascierto, P.A. et al. Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J. Clin. Oncol. 30, suppl; abstr 8511 (2012).

    Google Scholar 

  10. 10

    Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Paraiso, K.H. et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer 102, 1724–1730 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Morris, M.K., Saez-Rodriguez, J., Sorger, P.K. & Lauffenburger, D.A. Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 3216–3224 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sachs, K., Gifford, D., Jaakkola, T., Sorger, P. & Lauffenburger, D.A. Bayesian network approach to cell signaling pathway modeling. Sci. STKE 2002, pe38 (2002).

    PubMed  Google Scholar 

  18. 18

    Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med 18, 436–440 (2012).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Belcastro, V. et al. Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res. 39, 8677–8688 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Yeh, T.C. et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin. Cancer Res. 13, 1576–1583 (2007).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Solit, D.B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Pratilas, C.A. et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. USA 106, 4519–4524 (2009).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    VanBrocklin, M.W., Verhaegen, M., Soengas, M.S. & Holmen, S.L. Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res. 69, 1985–1994 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Fry, D.W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    CAS  PubMed  Google Scholar 

  29. 29

    Shapiro, G.I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1783 (2006).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Lens, S.M., Voest, E.E. & Medema, R.H. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat. Rev. CancerNatl. Rev. 10, 825–841 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Joseph, E.W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908 (2010).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Packer, L.M., East, P., Reis-Filho, J.S. & Marais, R. Identification of direct transcriptional targets of (V600E)BRAF/MEK signalling in melanoma. Pigment Cell Melanoma Res. 22, 785–798 (2009).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Hoeflich, K.P. et al. Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res. 69, 3042–3051 (2009).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Dry, J.R. et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res. 70, 2264–2273 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Puyol, M. et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63–73 (2010).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Haigis, K.M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Adjei, A.A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J. Clin. Oncol. 26, 2139–2146 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Schwartz, G.K. et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br. J. Cancer 104, 1862–1868 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Vaira, V. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl. Acad. Sci. USA 107, 8352–8356 (2010).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

  43. 43

    Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  Google Scholar 

  44. 44

    Faith, J.J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Opsahl, T., Agneessens, F. & Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Networks 32, 245–251 (2010).

    Article  Google Scholar 

Download references


We thank G. Mills, Y. Lu and N. Shih at the MD Anderson Reverse Phase Protein Array core facility; E. Fox at the Dana-Farber Cancer Institute Microarray core facility; S. Zhou for mouse husbandry; R. DePinho and G. Draetta and members of the laboratory, including S. Quayle, M. Chen, A. Blanchette and J. Kamara, for insightful discussions; R. Kwong for manuscript proofreading; D. Camacho for helping develop the TRAP algorithm; and M. Bar-Eli (University of Texas MD Anderson Cancer Center, Houston, Texas) for the SB-2 cell line. L.N.K. is supported by the Postdoctoral Fellowship (117842-PF-09-261-01-TBG) from the American Cancer Society. J.J.C. is supported by the US National Institutes of Health Director's Pioneer Award Program and the Howard Hughes Medical Institute. This work was supported by funding from the US National Institutes of Health to L.C. (U01 CA141508). L.C. is a recipient of the Abby S. and Howard P. Milstein 2009 Innovation Award for Melanoma and Skin Cancer Research and a CPRIT (Cancer Prevention Research Institute of Texas) Scholar in Cancer Research.

Author information




L.N.K. performed the majority of experiments described in the manuscript. J.C.C. performed GSEA and TRAP analyses. L.N.K. and J.C.C. jointly generated the remaining statistics. H.L. and T.L.H. helped maintain nude mouse colonies and provided technical assistance in many experiments. S.J. maintained the iNRAS GEM model colony and measured tumor volumes for primary melanomas. A.E.L., D.J. and G.C.C. performed the EVOC work, and the biopsy was supplied by J.A.W. and K.T.F. G.G. and F.L.M. performed some western blotting. J.H.J. generated the iNRAS mouse. R.P.B. assisted in generating the iNRAS time course microarray data. J.J.C. oversaw TRAP and statistical analyses. L.N.K. and L.C. conceived of the study. L.N.K., J.C.C. and L.C. wrote the paper.

Corresponding author

Correspondence to Lynda Chin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 5551 kb)

Supplementary Tables

Supplementary Tables 1–8 (XLS 2675 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwong, L., Costello, J., Liu, H. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18, 1503–1510 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing