Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53

Abstract

The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood. We show that ubiquitination factor E4B (UBE4B), an E3 and E4 ubiquitin ligase, physically interacts with p53 and Hdm2 (also known as Mdm2 in mice). UBE4B promotes p53 polyubiquitination and degradation and inhibits p53-dependent transactivation and apoptosis. Notably, silencing UBE4B expression impairs xenotransplanted tumor growth in a p53-dependent manner and overexpression of UBE4B correlates with decreased expression of p53 in these tumors. We also show that UBE4B overexpression is often associated with amplification of its gene in human brain tumors. Our data indicate that amplification and overexpression of UBE4B represent previously undescribed molecular mechanisms of inactivation of p53 in brain tumors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: UBE4B interacts with Hdm2 and p53.
Figure 2: Negative regulation of p53 by UBE4B.
Figure 3: The interdependence of UBE4B and Hdm2 in promoting the degradation of p53.
Figure 4: UBE4B mediates p53 polyubiquitination in vivo and in vitro.
Figure 5: UBE4B inhibits p53-dependent transactivation and apoptosis.
Figure 6: UBE4B promotes tumorigenesis in a p53-dependent manner and is overexpressed in brain tumors.

References

  1. Farrell, P.J., Allan, G.J., Shanahan, F., Vousden, K.H. & Crook, T. p53 is frequently mutated in Burkitt's lymphoma cell lines. EMBO J. 10, 2879–2887 (1991).

    Article  CAS  Google Scholar 

  2. Crook, T. & Vousden, K.H. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J. 11, 3935–3940 (1992).

    Article  CAS  Google Scholar 

  3. Greenblatt, M.S., Bennet, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  Google Scholar 

  4. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  5. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  6. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  7. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  8. Kubbutat, M.H., Jones, S.N. & Vousden, K.H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  Google Scholar 

  9. Honda, R., Tanaka, H. & Yasuda, Y. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  10. Montes de Oca Luna, R., Wagner, D.S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  Google Scholar 

  11. Jones, S.N., Roe, A.E., Donehower, L.A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  Google Scholar 

  12. Piotrowski, J. et al. Inhibition of the 26 S proteasome by polyubiquitin chains synthesized to have defined lengths. J. Biol. Chem. 272, 23712–23721 (1997).

    Article  CAS  Google Scholar 

  13. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  14. Pickart, C.M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000).

    Article  CAS  Google Scholar 

  15. Rodriguez, M.S., Desterro, J.M., Lain, S., Lane, D.P. & Hay, R.T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    Article  CAS  Google Scholar 

  16. Lai, Z. et al. Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J. Biol. Chem. 276, 31357–31367 (2001).

    Article  CAS  Google Scholar 

  17. Grossman, S.R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003).

    Article  CAS  Google Scholar 

  18. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  19. Johnson, E.S., Ma, P.C.M., Ota, I. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  20. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  21. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111–33120 (2001).

    Article  CAS  Google Scholar 

  22. Tu, D., Li, W., Ye, Y. & Brunger, A.T. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc. Natl. Acad. Sci. USA 104, 15599–15606 (2007).

    Article  CAS  Google Scholar 

  23. Koepp, D.M., Harper, J.W. & Elledge, S.J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97, 431–434 (1999).

    Article  CAS  Google Scholar 

  24. Matsumoto, M. et al. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23, 659–669 (2004).

    Article  CAS  Google Scholar 

  25. Okumura, F., Hatakeyama, S., Matsumoto, M., Kamura, T. & Nakayama, K.I. Functional regulation of FEZ1 by the U-box–type ubiquitin ligase E4B contributes to neuritogenesis. J. Biol. Chem. 279, 53533–53543 (2004).

    Article  CAS  Google Scholar 

  26. Hosoda, M. et al. UFD2a mediates the proteasomal turnover of p73 without promoting p73 ubiquitination. Oncogene 24, 7156–7169 (2005).

    Article  CAS  Google Scholar 

  27. Kaneko-Oshikawa, C. et al. Mammalian E4 is required for cardiac development and maintenance of the nervous system. Mol. Cell. Biol. 25, 10953–10964 (2005).

    Article  CAS  Google Scholar 

  28. Leng, R.P. et al. Pirh2, a p53 induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003).

    Article  CAS  Google Scholar 

  29. Sheng, Y. et al. Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat. Struct. Mol. Biol. 15, 1334–1342 (2008).

    Article  CAS  Google Scholar 

  30. Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004).

    Article  CAS  Google Scholar 

  31. Shi, D. et al. CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc. Natl. Acad. Sci. USA 106, 16275–16280 (2009).

    Article  CAS  Google Scholar 

  32. Sui, G. et al. Yin Yang 1 is a negative regulator of p53. Cell 117, 859–872 (2004).

    Article  CAS  Google Scholar 

  33. Finlay, C.A. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13, 301–306 (1993).

    Article  CAS  Google Scholar 

  34. McCurrach, M.E., Connor, T.M., Knudson, C.M., Korsmeyer, S.J. & Lowe, S.W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94, 2345–2349 (1997).

    Article  CAS  Google Scholar 

  35. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  36. Waldman, T. et al. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 3, 1034–1036 (1997).

    Article  CAS  Google Scholar 

  37. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  38. Saylors, R.L. et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res. 51, 4721–4723 (1991).

    PubMed  Google Scholar 

  39. Gaspar, N. et al. p53 Pathway dysfunction in primary childhood ependymomas. Pediatr. Blood Cancer 46, 604–613 (2006).

    Article  Google Scholar 

  40. Adesina, A.M., Nalbantoglu, J. & Cavenee, W.K. p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res. 54, 5649–5651 (1994).

    CAS  PubMed  Google Scholar 

  41. Crawford, J.R., MacDonald, T.J. & Packer, R.J. Medulloblastoma in childhood: new biological advances. Lancet Neurol. 6, 1073–1085 (2007).

    Article  CAS  Google Scholar 

  42. Uziel, T. et al. The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev. 19, 2656–2667 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge W. Gu (Columbia University) for the His-ubiquitin (wild-type) and His-Ub-ko plasmids, A.G. Jochemsen (Erasmus University Medical Center) for the Myc-Mdm2 plasmid, C. Blattner (Universität Heidelberg) for pSuper.neo.gpf-Mdm2 siRNA plasmid, J.A. Mahoney (Johns Hopkins University) for pEF-DEST51-Flag-UBE4B plasmid, B. Vogelstein (Johns Hopkins University) for HCT116 TP53−/− cells, S. Benchimol (York University) for BJT and BJT/DD cell lines and G. Lozano (University of Texas, M.D. Anderson Cancer Center) for Mdm2−/− Trp53−/− MEFs as described in the text. We thank T. Turner for technical help in making the figures. This work was supported by grants from the Alberta Heritage Foundation for Medical Research and Canadian Institutes of Health Research (to R.P.L.) and from the US National Institutes of Health (to S.L.P.). R.P.L. is an Alberta Heritage Foundation for Medical Research scholar.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and R.P.L. contributed to study design, performed most of the experiments, analyzed and interpreted the data and wrote the manuscript. S.L.P. provided logistical support and all tumor samples and interpreted and discussed the data. M.F. provided technical support and experimental assistance. N.T. conducted the western blotting for the pediatric astrocytoma tissues, isolated genomic DNAs from various tumor samples, carried out mutation detection for p53 in various tumor tissues and medulloblastoma cell lines and did long-term colony assays. J.M. collected tissue samples from various types of human brain tumors, cared for Ptch+/− mice, conducted all the mouse genotyping and isolated the cerebellum and cortex from the Ptch+/− mice. K.I.N. and S.H. provided the study material and technical support. V.A.T. provided technical support. L.F.S. conducted the FPLC protein purification experiments. L.S. provided technical support for the gel filtration. R.P.L. supervised and directed the project.

Corresponding author

Correspondence to Roger P Leng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 1891 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, H., Pomeroy, S., Ferreira, M. et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med 17, 347–355 (2011). https://doi.org/10.1038/nm.2283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2283

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer