Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia

Abstract

Pneumonia remains the leading cause of death from infection in the US, yet fundamentally new conceptual models underlying its pathogenesis have not emerged. We show that humans and mice with bacterial pneumonia have markedly elevated amounts of cardiolipin, a rare, mitochondrial-specific phospholipid, in lung fluid and find that it potently disrupts surfactant function. Intratracheal cardiolipin administration in mice recapitulates the clinical phenotype of pneumonia, including impaired lung mechanics, modulation of cell survival and cytokine networks and lung consolidation. We have identified and characterized the activity of a unique cardiolipin transporter, the P-type ATPase transmembrane lipid pump Atp8b1, a mutant version of which is associated with severe pneumonia in humans and mice. Atp8b1 bound and internalized cardiolipin from extracellular fluid via a basic residue–enriched motif. Administration of a peptide encompassing the cardiolipin binding motif or Atp8b1 gene transfer in mice lessened bacteria-induced lung injury and improved survival. The results unveil a new paradigm whereby Atp8b1 is a cardiolipin importer whose capacity to remove cardiolipin from lung fluid is exceeded during inflammation or when Atp8b1 is defective. This discovery opens the door for new therapeutic strategies directed at modulating the abundance or molecular interactions of cardiolipin in pneumonia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of cardiolipin in subjects with pneumonia.
Figure 2: Biophysical effects of cardiolipin.
Figure 3: Effect of cardiolipin on lung structure and epithelial cell viability.
Figure 4: Bacteria-induced lung injury after Atp8b1 overexpression.
Figure 5: Bacteria-induced lung injury in Atp8b1-mutant mice.
Figure 6: Bacterial lung injury after CBD peptide administration.

Similar content being viewed by others

References

  1. Agency for Healthcare Research and Quality. Pneumonia most common reason for hospitalization. AHRQ News and Numbers, July 2, 2008. http://www.ahrq.gov/news/nn/nn070208.htm (2008).

  2. Kadioglu, A., Weiser, J.N., Paton, J.C. & Andrew, P.W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6, 288–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Rooney, S.A., Young, S.L. & Mendelson, C.R. Molecular and cellular processing of lung surfactant. FASEB J. 8, 957–967 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Liau, D.F., Barrett, C.R., Bell, A.L., Cernansky, G. & Ryan, S.F. Diphosphatidylglycerol in experimental acute alveolar injury in the dog. J. Lipid Res. 25, 678–683 (1984).

    CAS  PubMed  Google Scholar 

  5. Ksenzenko, S.M. et al. Effect of triiodothyronine augmentation on rat lung surfactant phospholipids during sepsis. J. Appl. Physiol. 82, 2020–2027 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Koppelman, C.M., Den Blaauwen, T., Duursma, M.C., Heeren, R.M. & Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol. 183, 6144–6147 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitington, P.F., Freese, D.K., Alonso, E.M., Schwarzenberg, S.J. & Sharp, H.L. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J. Pediatr. Gastroenterol. Nutr. 18, 134–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Bull, L.N. et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18, 219–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pawlikowska, L. et al. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J. Hepatol. 53, 170–180 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mizgerd, J.P. Acute lower respiratory tract infection. N. Engl. J. Med. 358, 716–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dullforce, P., Sutton, D.C. & Heath, A.W. Enhancement of T cell–independent immune responses in vivo by CD40 antibodies. Nat. Med. 4, 88–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Grossmann, G. et al. Experimental neonatal respiratory failure induced by lysophosphatidylcholine: effect of surfactant treatment. J. Appl. Physiol. 86, 633–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Paulusma, C.C. et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44, 195–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Pawlikowska, L. et al. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum. Mol. Genet. 13, 881–892 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Borron, P. et al. Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L840–L847 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Yamazoe, M. et al. Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)-induced inflammatory cell responses by altering LPS binding to its receptors. J. Biol. Chem. 283, 35878–35888 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy, J.I. Jr. High alveolar surface tension pulmonary edema—relationship to adult respiratory distress syndrome. J. Thorac. Cardiovasc. Surg. 100, 145–146 (1990).

    PubMed  Google Scholar 

  18. Albert, R.K., Lakshminarayan, S., Hildebrandt, J., Kirk, W. & Butler, J. Increased surface tension favors pulmonary edema formation in anesthetized dogs' lungs. J. Clin. Invest. 63, 1015–1018 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sutrina, S.L. & Scocca, J.J. Phospholipids of Haemophilus influenzae Rd during exponential growth and following the development of competence for genetic transformation. J. Gen. Microbiol. 92, 410–412 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Kagan, V.E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sorice, M. et al. Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipids antibodies. Clin. Exp. Immunol. 122, 277–284 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Z. & Notter, R.H. Additivity of protein and nonprotein inhibitors of lung surfactant activity. Am. J. Respir. Crit. Care Med. 158, 28–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ritov, V.B., Menshikova, E.V. & Kelley, D.E. Analysis of cardiolipin in human muscle biopsy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 831, 63–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Benarafa, C., Priebe, G.P. & Remold-O'Donnell, E. The neutrophil serine protease inhibitor serpinb1 preserves lung defense functions in Pseudomonas aeruginosa infection. J. Exp. Med. 204, 1901–1909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McCormack, F.X., King, T.E. Jr., Voelker, D.R., Robinson, P.C. & Mason, R.J. Idiopathic pulmonary fibrosis. Abnormalities in the bronchoalveolar lavage content of surfactant protein A. Am. Rev. Respir. Dis. 144, 160–166 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Hughes, D.A. & Haslam, P.L. Changes in phosphatidylglycerol in bronchoalveolar lavage fluids from patients with cryptogenic fibrosing alveolitis. Chest 95, 82–89 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Jirsa, M. et al. Indel in the FIC1/ATP8B1 gene—a novel rare type of mutation associated with benign recurrent intrahepatic cholestasis. Hepatol. Res. 30, 1–3 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. van Mil, S.W., Klomp, L.W., Bull, L.N. & Houwen, R.H. FIC1 disease: a spectrum of intrahepatic cholestatic disorders. Semin. Liver Dis. 21, 535–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Frick, A.G. et al. Haemophilus influenzae stimulates ICAM-1 expression on respiratory epithelial cells. J. Immunol. 164, 4185–4196 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ujhazy, P. et al. Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology 34, 768–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Frankenberg, T. et al. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C ζ to activate the farnesoid X receptor. Hepatology 48, 1896–1905 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. McCoy, D.M., Fisher, K., Ryan, A.J. & Mallampalli, R.K. Transcriptional regulation of lung cytidylyltransferase in developing transgenic mice. Am. J. Respir. Cell Mol. Biol. 35, 394–402 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, B.B. & Mallampalli, R.K. Calmodulin binds and stabilizes the regulatory enzyme, CTP: phosphocholine cytidylyltransferase. J. Biol. Chem. 282, 33494–33506 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J. et al. Adenoviral gene transfer of a mutant surfactant enzyme ameliorates Pseudomonas-induced lung injury. Gene Ther. 13, 974–985 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  PubMed  Google Scholar 

  36. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  37. Kaewsuya, P., Danielson, N.D. & Ekhterae, D. Fluorescent determination of cardiolipin using 10-N-nonyl acridine orange. Anal. Bioanal. Chem. 387, 2775–2782 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mallampalli, R.K., Ryan, A.J., Salome, R.G. & Jackowski, S. Tumor necrosis factor-alpha inhibits expression of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 275, 9699–9708 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.E. Anderson, M.J. Welsh, J. Zabner and M. Gladwin for critical review of the manuscript and helpful suggestions. The Atp8b1G308V/G308V 129S1/SvlmJ mutant mice14 were a generous gift from L. Bull (University of California–San Francisco). Nontypable H. influenza strain 12 bacteria were kindly provided by D. Look (University of Iowa)29. Antibodies to ATP8b1 were generous gifts from D. Ortiz (Tufts University)30 and M. Ananthanarayanan (Mount Sinai School of Medicine)31. This material is based upon work supported, in part, by the US Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development. This work was supported by a Merit Review Award from the US Department of Veterans Affairs and US National Institutes of Health R01 grants HL068135, HL080229, HL081784, HL096376, HL097376 and HL098174 (to R.K.M.), HL70755, HL094488 and NIOSH OH008282 (to V.E.K.) and K23 HL075402 and U01 HL102288 (to L.D.). The contents do not represent the views of the Department of Veterans Affairs or the US government.

Author information

Authors and Affiliations

Authors

Contributions

N.B.R. designed and executed cardiolipin-ATP8b1 binding, in vitro imaging and immunological studies and wrote the manuscript. L.D. edited the manuscript and conducted the human studies. B.B.C. performed in vitro (cardiolipin uptake, biochemical and molecular) experiments and all mouse studies. B.J.M. and M.D. contributed to human studies and statistical analyses. A.K.W., T.A.C., M.A., P.L.B., F.C.H. and S.N.M. assisted with in vitro studies. A.J.R. and C.P.O. assisted with mouse studies. D.M.M., E.C.H.-R. and C.A.E. conducted cardiolipin analysis. L.G. conducted surfactant studies. J.C.S. and G.M. designed and conducted in vivo imaging. V.E.K. designed and executed mass spectrometry of cardiolipin, with assistance from Y.Y.T., and provided editorial suggestions. R.K.M. revised the manuscript and directed the study.

Corresponding author

Correspondence to Rama K Mallampalli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–13 and Supplementary Methods (PDF 724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, N., Durairaj, L., Chen, B. et al. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 16, 1120–1127 (2010). https://doi.org/10.1038/nm.2213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing