Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues

Abstract

Leukotriene B4 (LTB4) is a potent chemoattractant for myeloid leukocytes, which express BLT1, the high-affinity receptor for LTB4. We report here that BLT1 is induced substantially in CD8+ effector T cells and at lower amounts in CD8+ central memory T cells. LTB4 elicited BLT1-dependent chemotaxis in effector cells, but not in naive or central memory cells. Intravital microscopy showed that BLT1 signaling induced rapid integrin-mediated arrest of rolling effector and central memory cells in postcapillary venules. In competitive homing experiments, wild-type effector cells were three times more efficient at migrating to the inflamed peritoneal cavity than were BLT-deficient effector cells. These results identify LTB4-BLT1 as a potent nonchemokine pathway for cytotoxic effector cell traffic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong induction of BLT1 in activated CD8+ T cells after exposure to IL-2, but not IL-15.
Figure 2: LTB4 concentration gradients induce selective BLT1-dependent chemotaxis of TEFF cells.
Figure 3: Inhibition of LTB4-mediated chemotaxis of wild-type TEFF cells by CP-105,696.
Figure 4: LTB4 superfusion of inflamed mouse cremaster muscle induces rapid BLT1-dependent accumulation of TEFF and TCM cells in postcapillary venules.
Figure 5: Rolling and sticking of wild-type and BLT1-deficient TEFF and TCM cells in cremaster muscle venules before and during LTB4 superfusion.
Figure 6: BLT1 is required for efficient TEFF cell recruitment to the inflamed peritoneal cavity.

Similar content being viewed by others

References

  1. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  Google Scholar 

  2. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  3. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  4. Xie, H., Lim, Y.C., Luscinskas, F.W. & Lichtman, A.H. Acquisition of selectin binding and peripheral homing properties by CD4+ and CD8+ T cells. J. Exp. Med. 189, 1765–1776 (1999).

    Article  CAS  Google Scholar 

  5. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  Google Scholar 

  6. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  7. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  Google Scholar 

  8. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  9. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  10. Weninger, W., Manjunath, N. & von Andrian, U.H. Migration and differentiation of CD8+ T cells. Immunol. Rev. 185, 221–233 (2002).

    Article  Google Scholar 

  11. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  Google Scholar 

  12. Samuelsson, B., Dahlen, S.E., Lindgren, J.A., Rouzer, C.A. & Serhan, C.N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237, 1171–1176 (1987).

    Article  CAS  Google Scholar 

  13. Lewis, R.A., Austen, K.F. & Soberman, R.J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645–655 (1990).

    Article  CAS  Google Scholar 

  14. Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E. & Smith, M.J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265 (1980).

    Article  CAS  Google Scholar 

  15. Serhan, C.N. & Prescott, S.M. The scent of a phagocyte: Advances on leukotriene B4 receptors. J. Exp. Med. 192, F5–F8 (2000).

    Article  CAS  Google Scholar 

  16. Kato, K., Yokomizo, T., Izumi, T. & Shimizu, T. Cell-specific transcriptional regulation of human leukotriene B4 receptor gene. J. Exp. Med. 192, 413–420 (2000).

    Article  CAS  Google Scholar 

  17. Yokomizo, T., Kato, K., Terawaki, K., Izumi, T. & Shimizu, T. A second leukotriene B4 receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–432 (2000).

    Article  CAS  Google Scholar 

  18. Tager, A.M. et al. BLTR mediates leukotriene B4-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J. Exp. Med. 192, 439–446 (2000).

    Article  CAS  Google Scholar 

  19. Haribabu, B. et al. Targeted disruption of the leukotriene B4 receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J. Exp. Med. 192, 433–438 (2000).

    Article  CAS  Google Scholar 

  20. Payan, D.G., Missirian-Bastian, A. & Goetzl, E.J. Human T-lymphocyte subset specificity of the regulatory effects of leukotriene B4 . Proc. Natl. Acad. Sci. USA 81, 3501–3505 (1984).

    Article  CAS  Google Scholar 

  21. Goetzl, E.J. et al. Receptor-specific mechanisms for the responses of human leukocytes to leukotrienes. Ann. NY Acad. Sci. 524, 345–355 (1988).

    Article  CAS  Google Scholar 

  22. Showell, H.J., Breslow, R., Conklyn, M.J., Hingorani, G.P. & Koch, K. Characterization of the pharmacological profile of the potent LTB4 antagonist CP-105,696 on murine LTB4 receptors in vitro. Br. J. Pharmacol. 117, 1127–1132 (1996).

    Article  CAS  Google Scholar 

  23. Weninger, W. et al. Naive T cell recruitment to non-lymphoid tissues: a role for endothelium-expressed CCL21 in autoimmune disease and lymphoid neogenesis. J. Immunol. 170, 4638–4648 (2003).

    Article  CAS  Google Scholar 

  24. Coxon, A. et al. A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: A homeostatic mechanism in inflammation. Immunity 5, 653–666 (1996).

    Article  Google Scholar 

  25. Rosengren, S., Olofsson, A.M., von Andrian, U.H., Lundgren-Akerlund, E. & Arfors, K.-E. Leukotriene B4-induced neutrophil-mediated endothelial leakage in vitro and in vivo. J. Appl. Physiol. 71, 1322–1330 (1991).

    Article  CAS  Google Scholar 

  26. von Andrian, U.H. et al. L-selectin function is required for β2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am. J. Physiol. 263, H1034–H1044 (1992).

    CAS  Google Scholar 

  27. Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  Google Scholar 

  28. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  29. Ley, K. et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med. 181, 669–675 (1995).

    Article  CAS  Google Scholar 

  30. Ley, K., Allietta, M., Bullard, D.C. & Morgan, S. Importance of E-selectin for firm leukocyte adhesion in vivo. Circ. Res. 83, 287–294 (1998).

    Article  CAS  Google Scholar 

  31. Nohgawa, M. et al. Leukotriene B4-activated human endothelial cells promote transendothelial neutrophil migration. J. Leukoc. Biol. 62, 203–209 (1997).

    Article  CAS  Google Scholar 

  32. Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    Article  CAS  Google Scholar 

  33. Yokomizo, T., Izumi, T. & Shimizu, T. Leukotriene B4: metabolism and signal transduction. Arch. Biochem. Biophys. 385, 231–241 (2001).

    Article  CAS  Google Scholar 

  34. Campbell, D.J. & Butcher, E.C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002).

    Article  CAS  Google Scholar 

  35. Turner, C.R. et al. In vitro and in vivo effects of leukotriene B4 antagonism in a primate model of asthma. J. Clin. Invest. 97, 381–387 (1996).

    Article  CAS  Google Scholar 

  36. Gladue, R.P. et al. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. J. Exp. Med. 183, 1893–1898 (1996).

    Article  CAS  Google Scholar 

  37. Griffiths, R.J. et al. Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J. Exp. Med. 185, 1123–1129 (1997).

    Article  CAS  Google Scholar 

  38. Aiello, R.J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol. 22, 443–449 (2002).

    Article  CAS  Google Scholar 

  39. Matsukawa, A. et al. Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4. J. Immunol. 163, 6148–6154 (1999).

    CAS  PubMed  Google Scholar 

  40. Foxman, E.F., Kunkel, E.J. & Butcher, E.C. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J. Cell Biol. 147, 577–588 (1999).

    Article  CAS  Google Scholar 

  41. Campbell, J.J., Qin, S., Bacon, K.B., Mackay, C.R. & Butcher, E.C. Biology of chemokine and classical chemoattractant receptors: Differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J. Cell Biol. 134, 255–266 (1996).

    Article  CAS  Google Scholar 

  42. Huang, W.W. et al. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J. Exp. Med. 188, 1063–1074 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Schweitzer, B. Reinhardt and G. Cheng for technical support, and J. Moore for editorial assistance. We also thank W. Weninger and I. Mazo for advice and discussions. This work was supported by a National Institutes of Health T32 Transfusion Biology and Medicine Training Grant from Children's Hospital, Boston (to K.G. and M.G.) and by National Institutes of Health grants HL48675, HL54936 and HL56949 to U.H.v.A; HL04087 to A.M.T.; and AI050892, AI46999 and DK5005 to A.D.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H von Andrian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodarzi, K., Goodarzi, M., Tager, A. et al. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4, 965–973 (2003). https://doi.org/10.1038/ni972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing