Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment

Abstract

Leukotriene B4 (LTB4) was originally described as a potent lipid myeloid cell chemoattractant, rapidly generated from innate immune cells, that activates leukocytes through the G protein–coupled receptor BLT1. We report here that BLT1 is expressed on effector CD4+ T cells generated in vitro as well as in vivo when effector T cells migrate out of the lymphoid compartment and are recruited into peripheral tissues. BLT1 mediated LTB4-induced T helper type 1 (TH1) and TH2 cell chemotaxis and firm adhesion to endothelial cells under flow, as well as early CD4+ and CD8+ T cell recruitment into the airway in an asthma model. Our findings show that the LTB4-BLT1 pathway is involved in linking early immune system activation and early effector T cell recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BLT1 expression in effector CD4+ cells differentiated in vitro.
Figure 2: Chemotactic responses of wild-type and BLT1-deficient naive, TH1 and TH2 CD4+ cells to LTB4 and CXCL12.
Figure 3: Conversion of TH1 and TH2 CD4+ cell rolling to firm arrest by LTB4 and CXCL12.
Figure 4: BLT1 expression in CD4+ effector cells generated in vivo, and trafficking of these effectors in a primary immune response.
Figure 5: Trafficking of wild-type and BLT1-deficient T cells in an active immunization asthma model.
Figure 6: Trafficking of wild-type and BLT1-deficient T cells in an adoptive transfer asthma model.
Figure 7: OVA-specific IgE and IgG titers.

Similar content being viewed by others

References

  1. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  2. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  3. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  4. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  Google Scholar 

  5. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    Article  CAS  Google Scholar 

  6. Weninger, W., Manjunath, N. & von Andrian, U.H. Migration and differentiation of CD8+ T cells. Immunol. Rev. 186, 221–233 (2002).

    Article  CAS  Google Scholar 

  7. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    Article  CAS  Google Scholar 

  8. Mathew, A., Medoff, B.D., Carafone, A.D. & Luster, A.D. Cutting edge: Th2 cell trafficking into the allergic lung is dependent on chemoattractant receptor signaling. J. Immunol. 169, 651–655 (2002).

    Article  CAS  Google Scholar 

  9. Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  Google Scholar 

  10. Haeggstrom, J.Z. & Wetterholm, A. Enzymes and receptors in the leukotriene cascade. Cell. Mol. Life. Sci. 59, 742–753 (2002).

    Article  CAS  Google Scholar 

  11. Paterson, N.A., Wasserman, S.I., Said, J.W. & Austen, K.F. Release of chemical mediators from partially purified human lung mast cells. J. Immunol. 117, 1356–1362 (1976).

    CAS  PubMed  Google Scholar 

  12. Heavey, D.J. et al. Generation of leukotriene C4, leukotriene B4, and prostaglandin D2 by immunologically activated rat intestinal mucosa mast cells. J. Immunol. 140, 1953–1957 (1988).

    CAS  PubMed  Google Scholar 

  13. Huang, W.W. et al. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J. Exp. Med. 188, 1063–1074 (1998).

    Article  CAS  Google Scholar 

  14. Yokomizo, T., Kato, K., Terawaki, K., Izumi, T. & Shimizu, T. A second leukotriene B4 receptor, BLT2: A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–432 (2000).

    Article  CAS  Google Scholar 

  15. Tager, A.M. et al. BLTR mediates leukotriene B4-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J. Exp. Med. 192, 439–446 (2000).

    Article  CAS  Google Scholar 

  16. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  Google Scholar 

  17. Gerszten, R.E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723 (1999).

    Article  CAS  Google Scholar 

  18. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  19. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  20. Shindo, K., Fukumura, M. & Miyakawa, K. Leukotriene B4 levels in the arterial blood of asthmatic patients and the effects of prednisolone. Eur. Respir. J. 8, 605–610 (1995).

    CAS  PubMed  Google Scholar 

  21. Sampson, A.P., Castling, D.P., Green, C.P. & Price, J.F. Persistent increase in plasma and urinary leukotrienes after acute asthma. Arch. Dis. Child. 73, 221–225 (1995).

    Article  CAS  Google Scholar 

  22. Wenzel, S.E. et al. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am. J. Respir. Crit. Care Med. 152, 897–905 (1995).

    Article  CAS  Google Scholar 

  23. Csoma, Z. et al. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med. 166, 1345–9 (2002).

    Article  Google Scholar 

  24. Turner, C.R. et al. In vitro and in vivo effects of leukotriene B4 antagonism in a primate model of asthma. J. Clin. Invest. 97, 381–387 (1996).

    Article  CAS  Google Scholar 

  25. Henderson, W.R., Jr. et al. The importance of leukotrienes in airway inflammation in a mouse model of asthma. J. Exp. Med. 184, 1483–1494 (1996).

    Article  CAS  Google Scholar 

  26. Goodarzi, K., Goodarzi, M., Tager, A.M., Luster, A.D. & von Andrian, U.H. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat. Immunol. Published online 31 August 2003; doi:10.1038/ni972.

  27. MacLean, J.A., Sauty, A., Luster, A.D., Drazen, J.M. & De Sanctis, G.T. Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice. Am. J. Resp. Cell Mol. Biol. 20, 379–387 (1999).

    Article  CAS  Google Scholar 

  28. Oshiba, A. et al. Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. J. Clin. Invest. 97, 1398–1408 (1996).

    Article  CAS  Google Scholar 

  29. al-Laith, M. et al. Immunoglobulin-G-dependent stimulation of guinea pig lung mast cells and macrophages. Allergy 48, 608–614 (1993).

    Article  CAS  Google Scholar 

  30. Cohn, L., Homer, R.J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    Article  CAS  Google Scholar 

  31. Katz, H.R. et al. Secretory granule mediator release and generation of oxidative metabolites of arachidonic acid via Fc-IgG receptor bridging in mouse mast cells. J. Immunol. 148, 868–671 (1992).

    CAS  PubMed  Google Scholar 

  32. Hsueh, W., Gonzalez-Crussi, F. & Henderson, S. LTB4 production and lysosomal enzyme release by rat alveolar macrophages: effects of phagocytosis, receptor binding, and ionophore stimulation. Exp. Lung Res. 13, 385–399 (1987).

    Article  CAS  Google Scholar 

  33. Rankin, J.A., Schrader, C.E., Smith, S.M., Lewis, R.A. & Lewis, C.R. Recombinant interferon-γ primes alveolar macrophages cultured in vitro for the release of leukotriene B4 in response to IgG stimulation. J. Clin. Invest. 83, 1691–1700 (1989).

    Article  CAS  Google Scholar 

  34. Borgeat, P. & Samuelsson, B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J. Biol. Chem. 254, 2643–2646 (1979).

    CAS  PubMed  Google Scholar 

  35. Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E. & Smith, M.J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265 (1980).

    Article  CAS  Google Scholar 

  36. Smith, M.J., Ford-Hutchinson, A.W. & Bray, M.A. Leukotriene B: a potential mediator of inflammation. J. Pharm. Pharmacol. 32, 517–518 (1980).

    Article  CAS  Google Scholar 

  37. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997).

    Article  CAS  Google Scholar 

  38. Arcoleo, F., Milano, S., D'Agostino, P. & Cillari, E. Effect of exogenous leukotriene B4 (LTB4) on BALB/c mice splenocyte production of Th1 and Th2 lymphokines. Int. J. Immunopharmacol. 17, 457–463 (1995).

    Article  CAS  Google Scholar 

  39. Yamaoka, K.A. & Kolb, J.P. Leukotriene B4 induces interleukin 5 generation from human T lymphocytes. Eur. J. Immunol. 23, 2392–2398 (1993).

    Article  CAS  Google Scholar 

  40. de Jong, E.M., van Erp, P.E., van Vlijmen, I.M. & van de Kerkhof, P.C. The inter-relation between inflammation and epidermal proliferation in normal skin following epicutaneous application of leukotriene-B4—an immunohistochemical study. Clin. Exp. Dermatol. 17, 413–420 (1992).

    Article  CAS  Google Scholar 

  41. Hamid, Q., Tulic, M.K., Liu, M.C. & Moqbel, R. Inflammatory cells in asthma: mechanisms and implications for therapy. J. Allergy & Clin. Immunol. 111, S5–S17 (2003).

    Article  CAS  Google Scholar 

  42. Krump, E. & Borgeat, P. Kinetics of 5-lipoxygenase activation, arachidonic acid release, and leukotriene synthesis in human neutrophils: effects of granulocyte-macrophage colony-stimulating factor. Biochim. Biophys. Acta. 1213, 135–139 (1994).

    Article  CAS  Google Scholar 

  43. Reinhardt, R.L., Bullard, D.C., Weaver, C.T. & Jenkins, M.K. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J. Exp. Med. 197, 751–762 (2003).

    Article  CAS  Google Scholar 

  44. Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  Google Scholar 

  45. Kim, C.H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  Google Scholar 

  46. Colantonio, L., Recalde, H., Sinigaglia, F. & D'Ambrosio, D. Modulation of chemokine receptor expression and chemotactic responsiveness during differentiation of human naive T cells into Th1 or Th2 cells. Eur. J. Immunol. 32, 1264–1273 (2002).

    Article  CAS  Google Scholar 

  47. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  Google Scholar 

  48. Means, T.K., Hayashi, F., Smith, K.D., Aderem, A. & Luster, A.D. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170, 5165–5175 (2003).

    Article  CAS  Google Scholar 

  49. Allport, J.R. et al. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J. Leukoc. Biol. 71, 821–828 (2002).

    CAS  PubMed  Google Scholar 

  50. Medoff, B.D. et al. IFN-γ-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. J. Immunol. 168, 5278–5286 (2002).

    Article  CAS  Google Scholar 

  51. Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182, 1357–1367 (1995).

    Article  CAS  Google Scholar 

  52. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  53. MacLean, J.A., Ownbey, R. & Luster, A.D. T cell-dependent regulation of eotaxin in antigen-induced pulmonary eosinophila. J. Exp. Med. 184, 1461–1469 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C.P. Leary for technical assistance. This work is funded by National Institutes of Health grants K08-HL04087 (A.M.T.), F32-AI54107 (S.K.B.), F32-AI50399 (B.D.M.), R01-HL65584 (R.E.G.), and R01-AI050892, R01-AI46999, R01-AI40618, R01-CA69212 and PPG-DK5005 (A.D.L.), and by a Warren-Whitman-Richardson Fellowship (Harvard Medical School; S.A.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D Luster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tager, A., Bromley, S., Medoff, B. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 4, 982–990 (2003). https://doi.org/10.1038/ni970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing