Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling

Abstract

The extracellular protein Spätzle is required for activation of the Toll signaling pathway in the embryonic development and innate immune defense of Drosophila. Spätzle is synthesized as a pro-protein and is processed to a functional form by a serine protease. We show here that the mature form of Spätzle triggers a Toll-dependent immune response after injection into the hemolymph of flies. Spätzle specifically bound to Drosophila cells and to Cos-7 cells expressing Toll. Furthermore, in vitro experiments showed that the mature form of Spätzle bound to the Toll ectodomain with high affinity and with a stoichiometry of one Spätzle dimer to two receptors. The Spätzle pro-protein was inactive in all these assays, indicating that the pro-domain sequence, which is natively unstructured, acts to prevent interaction of the cytokine and its receptor Toll. These results show that, in contrast to the human Toll-like receptors, Drosophila Toll requires only an endogenous protein ligand for activation and signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Toll and Spätzle in a baculovirus expression system.
Figure 2: Partial proteolysis of Spätzle pro-protein generates a stable 106-amino-acid C-terminal fragment.
Figure 3: Recombinant Spätzle protein is biologically active and capable of mediating immune responses in vivo.
Figure 4: The processed form of Spätzle, but not the pro-protein, binds to and activates cells expressing the Toll receptor.
Figure 5: Spätzle C-106 but not pro-protein binds with high affinity to the Toll ectodomain and with a stoichiometry of one Spätzle dimer to two Toll receptor molecules.

Similar content being viewed by others

References

  1. Janeway, C.A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kaisho, T. & Akira, S. Toll-like receptors as adjuvant receptors. Bba-Mol. Cell. Res. 1589, 1–13 (2002).

    CAS  Google Scholar 

  3. Krutzik, S.R., Sieling, P.A. & Modlin, R.L. The role of Toll-like receptors in host defense against microbial infection. Curr. Opin. Immunol. 13, 104–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Underhill, D.M. & Ozinsky, A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Imler, J.L. & Hoffmann, J.A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Belvin, M.P. & Anderson, K.V. A conserved signaling pathway: The Drosophila Toll-Dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12, 393–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15119–15124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizuguchi, K., Parker, J.S., Blundell, T.L. & Gay, N.J. Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem. Sci. 23, 239–242 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. LeMosy, E.K., Tan, Y.Q. & Hashimoto, C. Activation of a protease cascade involved in patterning the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98, 5055–5060 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dissing, M., Giordano, H. & DeLotto, R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J. 20, 2387–2393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spatzle protein by Easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Develop. 72, 141–148 (1998).

    Article  CAS  Google Scholar 

  14. Levashina, E.A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ligoxygakis, P., Pelte, N., Hoffmann, J.A. & Reichhart, J.M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Schneider, D.S., Hudson, K.L., Lin, T.Y. & Anderson, K.V. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal ventral polarity in the Drosophila embryo. Genes Dev. 5, 797–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Tauszig, S., Jouanguy, E., Hoffmann, J.A. & Imler, J.L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. USA 97, 10520–10525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ooi, J.Y., Yagi, Y., Hu, X.D. & Ip, Y.T. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3, 82–87 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, C., Shen, B., Manley, J.L. & Zheng, L. Tehao functions in the Toll pathway in Drosophila melanogaster: possible roles in development and innate immunity. Insect Mol. Biol. 10, 457–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Lemmon, M.A. et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 16, 281–294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holbrook, M.R., Slakey, L.L. & Gross, D.J. Thermodynamic mixing of molecular states of the epidermal growth factor receptor modulates macroscopic ligand binding affinity. Biochem. J. 352, 99–108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huizinga, E.G. et al. Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 297, 1176–1179 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J., Tan, H. & Rost, B. Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. & Barton, G.J. JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rattenholl, A. et al. The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur. J. Biochem. 268, 3296–3303 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Zuany-Amorim, C., Hastewell, J. & Walker, C. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat. Rev. Drug. Discov. 1, 797–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P.S. & Ulevitch, R.J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex - Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129–21135 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Mitsuzawa, H. et al. Extracellular toll-like receptor 2 region containing Ser(40)-Ile(64) but not Cys(30)-Ser(39) is critical for the recognition of Staphylococcus aureus peptidoglycan. J. Biol. Chem. 276, 41350–41356 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, P.K. et al. Production of β-defensins by human airway epithelia. Proc. Natl. Acad. Sci. USA 95, 14961–14966 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, L.D., Roberts, A.A. & Ganz, T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Michel, T., Reichhart, J.M., Hoffmann, J.A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nat. Immunol. 1, 342–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gascan, H. et al. Constitutive production of human interleukin for Da-cells leukemia inhibitory factor by human tumor-cell lines derived from various tissues. J. Immunol. 144, 2592–2598 (1990).

    CAS  PubMed  Google Scholar 

  41. Robledo, O. et al. Signaling of the cardiotrophin-1 receptor - Evidence for a third receptor component. J. Biol. Chem. 272, 4855–4863 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. DeLotto, Y., Smith, C. & DeLotto, R. Multiple isoforms of the Drosophila Spatzle protein are encoded by alternatively spliced maternal mRNAs in the precellular blastoderm embryo. Mol. Gen. Genet. 264, 643–652 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Shah, T. Chapman, P. Lowe, G. Praefcke and M. Moncrieffe for advice on baculovirus expression and biophysical techniques, as well as J. Royet for reagents and advice for hemolymph transfer experiments. We also thank J. Ladbury and T. Blundell for discussions and critical reading of this manuscript. We thank M. Sims for access to facilities in the GlaxoSmithKline Immunology Department in Stevenage. This work was supported by Centre National de la Recherche Scientifique and the National Institutes of Health (grant 5P01AI44220-02). S.T.-D. was supported by a short-term fellowship from La Ligue Contre le Cancer. A.W. was supported by GlaxoSmithKline, The Cambridge European Trust and St. John's College, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Imler or Nicholas J Gay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, A., Tauszig-Delamasure, S., Hoffmann, J. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat Immunol 4, 794–800 (2003). https://doi.org/10.1038/ni955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni955

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing