Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase inhibition causes hyperacute tumor necrosis factor–induced shock via oxidative stress and phospholipase A2

Abstract

Dysregulated apoptotic cell death contributes to many pathological conditions, including sepsis, prompting the suggestion that caspase inhibition to block apoptosis could have useful therapeutic applications. Because the cytokine tumor necrosis factor (TNF, also known as TNF-α) is both pro-apoptotic and pro-inflammatory and is involved in septic shock, we tested whether caspase inhibition would alleviate TNF-induced toxicity in vivo. General caspase inhibition by the protease inhibitor zVAD-fmk exacerbated TNF toxicity by enhancing oxidative stress and mitochondrial damage, resulting in hyperacute hemodynamic collapse, kidney failure and death. Thus, survival of TNF toxicity depends on caspase-dependent processes. Our results demonstrated the pathophysiological relevance of caspase-independent, ROS-mediated pathways in response to lethal TNF-induced shock in mice. In addition, survival of TNF toxicity seemed to require a caspase-dependent protective feedback on excessive reactive oxygen species (ROS) formation and phospholipase A2 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: zVAD-fmk sensitizes mice to TNF but not to LPS.
Figure 2: zVAD-fmk sensitization and anti-oxidant treatment.
Figure 3: zVAD-fmk sensitization and PLA2, cyclooxygenase, 5-lipoxygenase or PAF inhibition.
Figure 4: zVAD-fmk sensitization reduces cPLA2 cleavage.
Figure 5: Cardiovascular analysis of zVAD-fmk sensitization.
Figure 6: HNE immunoreaction, H&E histology and electron microscopy.

Similar content being viewed by others

References

  1. Ayala, A., Lomas, J.L., Grutkoski, P.S. & Chung, C.S. Pathological aspects of apoptosis in severe sepsis and shock? Int. J. Biochem. Cell Biol. 35, 7–15 (2003).

    Article  CAS  Google Scholar 

  2. Krammer, P.H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  Google Scholar 

  3. Bilsland, J. & Harper, S. Caspases and neuroprotection. Curr. Opin. Investig. Drugs 3, 1745–1752 (2002).

    CAS  PubMed  Google Scholar 

  4. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  Google Scholar 

  5. Leist, M. & Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598 (2001).

    Article  CAS  Google Scholar 

  6. Baud, V. & Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell. Biol. 11, 372–377 (2001).

    Article  CAS  Google Scholar 

  7. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  Google Scholar 

  8. Fiers, W., Beyaert, R., Declercq, W. & Vandenabeele, P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730 (1999).

    Article  CAS  Google Scholar 

  9. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  10. O'Donnell, V.B., Spycher, S. & Azzi, A. Involvement of oxidants and oxidant-generating enzyme(s) in tumour-necrosis-factor-α-mediated apoptosis: role for lipoxygenase pathway but not mitochondrial respiratory chain. Biochem. J. 310, 133–141 (1995).

    Article  CAS  Google Scholar 

  11. Künstle, G. et al. ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-α. Immunology Letters 55, 5–10 (1997).

    Article  Google Scholar 

  12. Piguet, P.F., Vesin, C., Guo, J., Donati, Y. & Barazzone, C. TNF-induced enterocyte apoptosis in mice is mediated by the TNF receptor 1 and does not require p53. Eur. J. Immunol. 28, 3499–3505 (1998).

    Article  CAS  Google Scholar 

  13. Piguet, P.F., Vesin, C., Donati, Y. & Barazzone, C. TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab. Invest. 79, 495–500 (1999).

    CAS  PubMed  Google Scholar 

  14. Rodriguez, I., Matsuura, K., Ody, C., Nagata, S. & Vassalli, P. Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J. Exp. Med. 184, 2067–2072 (1996).

    Article  CAS  Google Scholar 

  15. Jaeschke, H. et al. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-α-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J. Immunol. 160, 3480–3486 (1998).

    CAS  PubMed  Google Scholar 

  16. Ameloot, P. et al. Bioavailability of recombinant tumor necrosis factor determines its lethality in mice. Eur. J. Immunol. 32, 2759–2765 (2002).

    Article  CAS  Google Scholar 

  17. Schotte, P., Declercq, W., Van Huffel, S., Vandenabeele, P. & Beyaert, R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett. 442, 117–121 (1999).

    Article  CAS  Google Scholar 

  18. Yamashita, K. et al. Caspases mediate tumor necrosis factor-α-induced neutrophil apoptosis and downregulation of reactive oxygen production. Blood 93, 674–685 (1999).

    CAS  PubMed  Google Scholar 

  19. Pollock, J.D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    Article  CAS  Google Scholar 

  20. Li, Y. & Trush, M.A. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem. Biophys. Res. Commun. 253, 295–299 (1998).

    Article  CAS  Google Scholar 

  21. Rosenthal, M.D., Vishwanath, B.S. & Franson, R.C. Effects of aristolochic acid on phospholipase A2 activity and arachidonate metabolism of human neutrophils. Biochim. Biophys. Acta 1001, 1–8 (1989).

    Article  CAS  Google Scholar 

  22. Denson, D.D., Wang, X., Worrell, R.T., AlKhalili, O. & Eaton, D.C. Cytosolic phospholipase A2 is required for optimal ATP activation of BK channels in GH(3) cells. J. Biol. Chem. 276, 7136–7142 (2001).

    Article  CAS  Google Scholar 

  23. Worrell, R.T., Bao, H.F., Denson, D.D. & Eaton, D.C. Contrasting effects of cPLA2 on epithelial Na+ transport. Am. J. Physiol. Cell Physiol. 281, C147–C156 (2001).

    Article  CAS  Google Scholar 

  24. Adam-Klages, S. et al. Caspase-mediated inhibition of human cytosolic phospholipase A2 during apoptosis. J. Immunol. 161, 5687–5694 (1998).

    CAS  PubMed  Google Scholar 

  25. Luschen, S., Ussat, S., Kronke, M. & Adam-Klages, S. Cleavage of human cytosolic phospholipase A2 by caspase-1 (ICE) and caspase-8 (FLICE). Biochem. Biophys. Res. Commun. 253, 92–98 (1998).

    Article  CAS  Google Scholar 

  26. Cauwels, A. et al. Protection against TNF-induced lethal shock by soluble guanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity 13, 223–231 (2000).

    Article  CAS  Google Scholar 

  27. Atsumi, G. et al. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J. Biol. Chem. 273, 13870–13877 (1998).

    Article  CAS  Google Scholar 

  28. Kronke, M. & Adam-Klages, S. Role of caspases in TNF-mediated regulation of cPLA(2). FEBS Lett. 531, 18–22 (2002).

    Article  CAS  Google Scholar 

  29. Kelliher, M.A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  30. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  31. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z.G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  Google Scholar 

  32. Vanden Berghe, W. et al. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem. Pharmacol. 60, 1185–1195 (2000).

    Article  CAS  Google Scholar 

  33. Beyaert, R., Van Loo, G., Heyninck, K. & Vandenabeele, P. Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas. Int. Rev. Cytol. 214, 225–272 (2002).

    Article  CAS  Google Scholar 

  34. Schoonbroodt, S. & Piette, J. Oxidative stress interference with the nuclear factor-κB activation pathways. Biochem. Pharmacol. 60, 1075–1083 (2000).

    Article  CAS  Google Scholar 

  35. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    Article  CAS  Google Scholar 

  36. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell. Biol. 153, 999–1010 (2001).

    Article  CAS  Google Scholar 

  37. Luschen, S., Ussat, S., Scherer, G., Kabelitz, D. & Adam-Klages, S. Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J. Biol. Chem. 275, 24670–24678 (2000).

    Article  CAS  Google Scholar 

  38. Zheng, T.S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. 6, 1241–1247 (2000).

    Article  CAS  Google Scholar 

  39. Henshall, D.C., Skradski, S.L., Bonislawski, D.P., Lan, J.Q. & Simon, R.P. Caspase-2 activation is redundant during seizure-induced neuronal death. J. Neurochem. 77, 886–895 (2001).

    Article  CAS  Google Scholar 

  40. Foghsgaard, L., Lademann, U., Wissing, D., Poulsen, B. & Jaattela, M. Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J. Biol. Chem. 277, 39499–39506 (2002).

    Article  CAS  Google Scholar 

  41. Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

    Article  CAS  Google Scholar 

  42. Erickson, S.L. et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2–deficient mice. Nature 372, 560–563 (1994).

    Article  CAS  Google Scholar 

  43. Van Snick, J. et al. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc. Natl. Acad. Sci. USA 83, 9679–9683 (1986).

    Article  CAS  Google Scholar 

  44. Green, L.C. et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen and the Interuniversitaire Attractiepolen. A.C. is a postdoctoral fellow with the FWO-Vlaanderen. We thank A. Raeymaekers and F. Duerinck for purifying TNF, E. Rogge and J. Hostens for help with immunoblotting and statistics, respectively, L. Van Geert, E. Spruyt and T. Hauttekeete for animal care, J. Debets for his preparation of mice in the hemodynamic studies and K. Vleminckx for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anje Cauwels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauwels, A., Janssen, B., Waeytens, A. et al. Caspase inhibition causes hyperacute tumor necrosis factor–induced shock via oxidative stress and phospholipase A2. Nat Immunol 4, 387–393 (2003). https://doi.org/10.1038/ni914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing