Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1

This article has been updated

Abstract

CD4, a member of the immunoglobulin superfamily of receptors that mediates cell-cell interactions in the immune system, is the primary receptor for HIV-1. The extracellular portion of CD4 is a concatenation of four immunoglobulin-like domains, D1 to D4. The D1, D2 and D4 domains each contain a disulfide bond. We show here that the D2 disulfide bond is redox-active. The redox state of the thiols (disulfide versus dithiol) appeared to be regulated by thioredoxin, which is secreted by CD4+ T cells. Locking the CD4 and the thioredoxin active-site dithiols in the reduced state with a hydrophilic trivalent arsenical blocked entry of HIV-1 into susceptible cells. These findings indicate that redox changes in CD4 D2 are important for HIV-1 entry and represent a new target for HIV-1 entry inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-surface CD4 contains free thiol(s).
Figure 2: The CD4 D2 disulfide is redox-active.
Figure 3: Reduction of cell-surface and soluble CD4 by thioredoxin.
Figure 4: Labeling of cell-surface CD4 with GSAO-B.
Figure 5: Inhibition of HIV-1 entry into CD4+ cells by GSAO.

Similar content being viewed by others

Change history

  • 09 July 2002

    Sentence, prime mark, and online figure were updated with note and PDF was appended with note. Issue PDF will contain "corrected 09 July 2002 (details online)"

References

  1. Konig, R. Interactions between MHC molecules and co-receptors of the TCR. Curr. Opin. Immunol. 14, 75–83 (2002).

    Article  CAS  Google Scholar 

  2. Sodroski, J.G. HIV-1 entry inhibitors in the side pocket. Cell 99, 243–246 (1999).

    Article  CAS  Google Scholar 

  3. Maddon, P.J. et al. The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42, 93–104 (1985).

    Article  CAS  Google Scholar 

  4. Harris, R.J., Chamow, S.M., Gregory, T.J. & Spellman, M.W. Characterization of a soluble form of human CD4. Eur. J. Biochem. 188, 291–300 (1990).

    Article  CAS  Google Scholar 

  5. Wang, J. et al. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348, 411–418 (1990).

    Article  CAS  Google Scholar 

  6. Ryu, S.R. et al. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348, 419–426 (1990).

    Article  CAS  Google Scholar 

  7. Brady, R.L. et al. Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains. Science 260, 979–983 (1993).

    Article  CAS  Google Scholar 

  8. Katz, B.A. & Kossiakoff, A. The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J. Biol. Chem. 261, 15480–15485 (1986).

    CAS  PubMed  Google Scholar 

  9. Weiner, S.J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  10. Pace, C.N., Grimsley, G.R., Thomson, J.A. & Barnett, B.J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J. Biol. Chem. 263, 11820–11825 (1988).

    CAS  PubMed  Google Scholar 

  11. Ingalls, H.M., Goodloe-Holland, C.M. & Luna, E.J. Junctional plasma membrane domains isolated from aggregating Dictyostelium discoideum amebae. Proc. Natl. Acad. Sci. USA 83, 4779–4783 (1986).

    Article  CAS  Google Scholar 

  12. Jiang, X.-M., Fitzgerald, M., Grant, C.M. & Hogg, P.J. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J. Biol. Chem. 274, 2416–2423 (1999).

    Article  CAS  Google Scholar 

  13. Takebe, Y. et al. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8, 466–472 (1988).

    Article  CAS  Google Scholar 

  14. Tonissen, K. et al. Site-directed mutagenesis of human thioredoxin. J. Biol. Chem. 268, 22485–22489 (1993).

    CAS  PubMed  Google Scholar 

  15. Deen, K.C. et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 331, 82–84 (1988).

    Article  CAS  Google Scholar 

  16. Sowerby, D.B. in The Chemistry of Organic Arsenic, Antimony, and Bismuth Compounds (ed. Patai, S.) 25–88 (John Wiley and Sons, New York, NY, 1994).

    Book  Google Scholar 

  17. Jauhiainen, M., Stevenson, K.J. & Dolphin, P.J. Human plasma lecithin-cholesterol acyltransferase. The vicinal nature of cysteine 31 and cysteine 184 in the catalytic site. J. Biol. Chem. 263, 6525–6533 (1988).

    CAS  PubMed  Google Scholar 

  18. Donoghue, N., Yam, P.T.W., Jiang, X.-M. & Hogg, P.J. Presence of closely-spaced protein thiols on the surface of mammalian cells. Protein Sci. 9, 2436–2445 (2000).

    Article  CAS  Google Scholar 

  19. Vandegraaff, N. et al. Specific inhibition of human immunodeficiency virus type 1 (HIV-1) integration in cell culture: putative inhibitors of HIV-1 integrase. Antimicrob. Agents Chemother. 45, 2510–2516 (2001).

    Article  CAS  Google Scholar 

  20. Collman, R. et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66, 7517–7521 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. LaBranche, C.C. et al. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J. Virol. 73, 10310–10319 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakashima, I. et al. Redox mechanism as alternative to ligand binding for receptor activation delivering disregulated cellular signals. J. Immunol. 152, 1064–1071 (1994).

    CAS  PubMed  Google Scholar 

  23. Lynch, G.W., Sloane, A.J., Rasco, V., Lai, A. & Cunningham, A.L. Direct evidence for native CD4 oligomers in lymphoid and monocytoid cells. Eur. J. Immunol. 29, 2590–2602 (1999).

    Article  CAS  Google Scholar 

  24. Ryser, H.J.-P., Levy, E.M., Mandel, R. & DiSciullo, G.J. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc. Natl. Acad. Sci. USA 91, 45459–4563 (1994).

    Article  Google Scholar 

  25. Richardson, J.A. Protein anatomy. Adv. Protein. Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  26. Karle, I.L., Kishore, R., Raghothama, S. & Balaram, P. Cyclic cystine peptides. Antiparallel β-sheet conformation for the 20-membered ring in Boc-Cys-Val-Aib-Ala-Leu-Cys-NHMe. J. Am. Chem. Soc. 110, 1958–1963 (1988).

    Article  CAS  Google Scholar 

  27. Karle, I.L., Flippen-Anderson, J.L., Kishore, R. & Balaram, P. Cystine peptides. Int. J. Peptide Protein Res. 34, 37–41 (1989).

    Article  CAS  Google Scholar 

  28. Williams, A.F., Davis, S.J., He, Q. & Barclay, A.N. Structural diversity in domains of the immunoglobulin superfamily. Cold Spring Harbor Symp. Quant. Biol. 65, 637–647 (1989).

    Article  Google Scholar 

  29. Kirszbaum, L., Sharpe, J.A., Goss, N., Lahnstein, J. & Walker, I.D. The α-chain of murine CD8 lacks an invariant Ig-like disulfide bond but contains a unique intrachain loop instead. J. Immunol. 142, 3931–3936 (1989).

    CAS  PubMed  Google Scholar 

  30. Holmgren, A. Thioredoxin. Annu. Rev. Biochem. 54, 237–271 (1985).

    Article  CAS  Google Scholar 

  31. Tagaya, Y. et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin: possible involvement of a dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764 (1989).

    Article  CAS  Google Scholar 

  32. Martin, H. & Dean M. Identification of a thioredoxin-related protein associated with plasma membranes. Biochem. Biophys. Res. Commun. 175, 123–128 (1991).

    Article  CAS  Google Scholar 

  33. Rubartelli, A., Bajetto, A., Allavena, G., Wollman, E. & Sitia, R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J. Biol. Chem. 267, 24161–24164 (1992).

    CAS  Google Scholar 

  34. Woolman, E.E., Kahan, A. & Fradelizi, D. Detection of membrane associated thioredoxin on human cell lines. Biochem. Biophys. Res. Commun. 230, 602–606 (1997).

    Article  Google Scholar 

  35. Soderberg, A., Sahaf, B. & Rosen, A. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res. 60, 2281–2289 (2000).

    CAS  PubMed  Google Scholar 

  36. Bachelder, R.E., Bilancieri, J., Lin, W. & Letvin, N.L. A human recombinant Fab identifies a human immunodeficiency virus type 1-induced conformational change in cell surface-expressed CD4. J. Virol. 69, 5734–5742 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanejouand, Y.H. Normal-mode analysis suggests important flexibility between the two N-terminal domains of CD4 and supports the hypothesis of a conformational change in CD4 upon HIV binding. Protein Eng. 9, 671–677 (1996).

    Article  CAS  Google Scholar 

  38. Burkly, L.C. et al. Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. J. Immunol. 149, 1779–1787 (1992).

    CAS  PubMed  Google Scholar 

  39. Moore, J.P., Sattentau, Q.J., Klasse, P.J. & Burkly, L.C. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of the human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J. Virol. 66, 4784–4793 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamura, H. et al. Elevation of plasma thioredoxin levels in HIV-infected individuals. Int. Immunol. 8, 603–611 (1996).

    Article  CAS  Google Scholar 

  41. Nakamura, H. et al. Chronic elevation of plasma thioredoxin: Inhibition of chemotaxis and curtailment of life expectancy in AIDS. Proc. Natl. Acad. Sci. USA 98, 2688–2693 (2001).

    Article  CAS  Google Scholar 

  42. Roederer, M., Ela, S.W., Staal, F.J.T. & Herzenberg, L.A. N-acetylcysteine: A new approach to anti-HIV therapy. AIDS Res. Hum. Retroviruses 8, 209–216 (1992).

    Article  CAS  Google Scholar 

  43. Dröge, W., Eck, H.-P. & Mihm, S. HIV-induced cysteine deficiency and T-cell dysfunction - a rationale for treatment with N-acetylcysteine. Immunol. Today 13, 211–214 (1992).

    Article  Google Scholar 

  44. Bergamini, A. et al. Cystamine potently suppresses in vitro HIV replication in acutely and chronically infected human cells. J. Clin. Invest. 93, 2251–2257 (1994).

    Article  CAS  Google Scholar 

  45. Ho, W.-Z. et al. Cystamine inhibits HIV type 1 replication in cells of monocyte/macrophage and T cell lineages. AIDS Res. Hum. Retroviruses 11, 451–459 (1995).

    Article  CAS  Google Scholar 

  46. Bergamini, A. et al. In vitro inhibition of the replication of human immunodeficiency virus type 1 by β-mercaptoethanol (cysteamine). J. Infect. Dis. 174, 214–218 (1996).

    Article  CAS  Google Scholar 

  47. Schulof, R.S. et al. Treatment of HTLV-III/LAV-infected patients with D-penicillamine. Arzneim Forsch Drug Res. 36, 1531–1534 (1986).

    CAS  Google Scholar 

  48. Chandra, P. & Sarin, P.S. Selective inhibition of replication of the AIDS-associated virus HTLV-III/LAV by synthetic D-penicillamine. Arzneim Forsch Drug Res. 36, 184–186 (1986).

    CAS  Google Scholar 

  49. D'Souza, M.P., Cairns, J.S. & Plaeger, S.F. Current evidence and future directions for targeting HIV entry: therapeutic and prophylactic strategies. J. Am. Med. Assoc. 284, 215–222 (2000).

    Article  CAS  Google Scholar 

  50. Li. P. & Burrell, C.J. Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Res. Hum. Retroviruses 8, 253–259 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Holmgren and F. Clarke for the thioredoxins; C. LaBranche for the HIV-18xD368R Env clone; A. Maerz, H. Drummer and A. Cane for technical assistance; and A. Jaramillo and R. Ffrench for help and advice. Supported by the Australian Research Council, the National Health and Medical Research Council of Australia and the NSW Health Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Hogg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthias, L., Yam, P., Jiang, XM. et al. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol 3, 727–732 (2002). https://doi.org/10.1038/ni815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing