Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IgEb immune complexes activate macrophages through FcγRIV binding

Abstract

Because functional analysis of Fc receptors (FcRs) relies heavily on mouse models, the identification of another Fcγ receptor is particularly noteworthy. We demonstrate that FcγRIV, identified here as the mouse ortholog of primate FcγRIII, required association of the FcR γ-chain for optimal expression and function on myeloid cells; its signaling potential was also enhanced by a cytoplasmic 'YEEP' motif that was able to recruit the adaptor molecule Crk-L and phosphatidylinositol-3-OH kinase. Unexpectedly, FcγRIV 'preferentially' bound immunoglobulin E antibodies of the 'b' allotype (IgEb) as well as IgG2a and IgG2b antibodies. Ligation of FcγRIV by antigen-IgEb immune complexes promoted macrophage-mediated phagocytosis, presentation of antigen to T cells, production of proinflammatory cytokines and the late phase of cutaneous allergic reactions. IgEb antibody–mediated modification of macrophage responses may therefore influence mouse asthma models and strain-dependent differences in parasite susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the amino acid sequences of FcγRIV and low-affinity FcγRs.
Figure 2: FcR expression in various tissues and cell types.
Figure 3: Comparative analysis of the mouse immunoglobulin isotype–binding specificities of FcγRIII and FcγRIV.
Figure 4: FcγRIV-IgEb induces phagocytosis, the production proinflammatory mediators and the presentation of exogenous antigen.
Figure 5: Induction of late-phase cutaneous reactions by macrophage activation mediated by IgEb-FcγRIV.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Ravetch, J.V. & Kinet, J.P. Fc receptors. Annu. Rev. Immunol. 9, 457–492 (1991).

    Article  CAS  Google Scholar 

  2. Ravetch, J.V. & Clynes, R.A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16, 421–432 (1998).

    Article  CAS  Google Scholar 

  3. Heyman, B. Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu. Rev. Immunol. 18, 709–737 (2000).

    Article  CAS  Google Scholar 

  4. Qiu, W.Q., de Bruin, D., Brownstein, B.H., Pearse, R. & Ravetch, J.V. Organization of the human and mouse low-affinity FcγR genes: duplication and recombination. Science 248, 732–735 (1990).

    Article  CAS  Google Scholar 

  5. Davis, R.S. et al. Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol. Rev. 190, 123–136 (2002).

    Article  CAS  Google Scholar 

  6. Nimmerjahn, F. & Ravetch, J.V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  Google Scholar 

  7. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  Google Scholar 

  8. van der Pol, W. & van de Winkel, J.G. IgG receptor polymorphisms: risk factors for disease. Immunogenetics 48, 222–232 (1998).

    Article  CAS  Google Scholar 

  9. Hibbs, M.L., Hogarth, P.M. & McKenzie, I.F. The mouse Ly-17 locus identifies a polymorphism of the Fc receptor. Immunogenetics 22, 335–348 (1985).

    Article  CAS  Google Scholar 

  10. Davis, R.S., Ehrhardt, G.R., Leu, C.M., Hirano, M. & Cooper, M.D. An extended family of Fc receptor relatives. Eur. J. Immunol. 35, 674–680 (2005).

    Article  CAS  Google Scholar 

  11. Mechetina, L.V., Najakshin, A.M., Alabyev, B.Y., Chikaev, N.A. & Taranin, A.V. Identification of CD16–2, a novel mouse receptor homologous to CD16/FcγRIII. Immunogenetics 54, 463–468 (2002).

    Article  CAS  Google Scholar 

  12. Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J.V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  Google Scholar 

  13. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  14. Hazenbos, W.L. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16) deficient mice. Immunity 5, 181–188 (1996).

    Article  CAS  Google Scholar 

  15. Shibuya, A. et al. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1, 441–446 (2000).

    Article  CAS  Google Scholar 

  16. Amigorena, S., Salamero, J., Davoust, J., Fridman, W.H. & Bonnerot, C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 358, 337–341 (1992).

    Article  CAS  Google Scholar 

  17. Nagai, H., Sakurai, T., Inagaki, N. & Mori, H. An immunopharmacological study of the biphasic allergic skin reaction in mice. Biol. Pharm. Bull. 18, 239–245 (1995).

    Article  CAS  Google Scholar 

  18. Hughes, A.L. Gene duplication and recombination in the evolution of mammalian Fc receptors. J. Mol. Evol. 43, 4–10 (1996).

    Article  CAS  Google Scholar 

  19. van Hage-Hamsten, M. et al. Associations of Fc epsilon R1-β polymorphisms with immunoglobin E antibody responses to common inhalant allergens in a rural population. Clin. Exp. Allergy 32, 838–842 (2002).

    Article  CAS  Google Scholar 

  20. Pandey, J.P. Genetic polymorphism of Fc. Science 311, 1376–1377 (2006).

    Article  CAS  Google Scholar 

  21. Paterson, T., Innes, J., McMillan, L., Downing, I. & Carter, M.C. Variation in IgG1 heavy chain allotype does not contribute to differences in biological activity of two human anti-Rhesus (D) monoclonal antibodies. Immunotechnology 4, 37–47 (1998).

    Article  CAS  Google Scholar 

  22. Shinkai, Y., Nakauchi, H., Honjo, T. & Okumura, K. Mouse immunoglobulin allotypes: multiple differences between the nucleic acid sequences of the IgEa and IgEb alleles. Immunogenetics 27, 288–292 (1988).

    Article  CAS  Google Scholar 

  23. Radaev, S., Motyka, S., Fridman, W.H., Sautes-Fridman, C. & Sun, P.D. The structure of a human type III Fcγ receptor in complex with Fc. J. Biol. Chem. 276, 16469–16477 (2001).

    Article  CAS  Google Scholar 

  24. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  Google Scholar 

  25. Bartlett, W.C., Kelly, A.E., Johnson, C.M. & Conrad, D.H. Analysis of murine soluble FcεRII sites of cleavage and requirements for dual-affinity interaction with IgE. J. Immunol. 154, 4240–4246 (1995).

    CAS  PubMed  Google Scholar 

  26. Haczku, A. et al. CD23 deficient mice develop allergic airway hyperresponsiveness following sensitization with ovalbumin. Am. J. Respir. Crit. Care Med. 156, 1945–1955 (1997).

    Article  CAS  Google Scholar 

  27. Cernadas, M. et al. CD23 and allergic pulmonary inflammation: potential role as an inhibitor. Am. J. Respir. Cell Mol. Biol. 20, 1–8 (1999).

    Article  CAS  Google Scholar 

  28. Maurer, D. et al. The high affinity IgE receptor (FcεRI) mediates IgE-dependent allergen presentation. J. Immunol. 154, 6285–6290 (1995).

    CAS  PubMed  Google Scholar 

  29. Dolovich, J. et al. Late cutaneous allergic responses in isolated IgE-dependent reactions. J. Allergy Clin. Immunol. 52, 38–46 (1973).

    Article  CAS  Google Scholar 

  30. Holden, C.A. Atopic dermatitis–messengers, second messengers and cytokines. Clin. Exp. Dermatol. 18, 201–207 (1993).

    Article  CAS  Google Scholar 

  31. Finkelman, F.D., Pearce, E.J., Urban, J.F., Jr. & Sher, A. Regulation and biological function of helminth-induced cytokine responses. Immunol. Today 12, A62–A66 (1991).

    Article  CAS  Google Scholar 

  32. Butterworth, A.E. Cell-mediated damage to helminths. Adv. Parasitol. 23, 143–235 (1984).

    Article  CAS  Google Scholar 

  33. Onah, D.N. et al. Mucosal defense against gastrointestinal nematodes: responses of mucosal mast cells and mouse mast cell protease 1 during primary strongyloides venezuelensis infection in FcRγ-knockout mice. Infect. Immun. 68, 4968–4971 (2000).

    Article  CAS  Google Scholar 

  34. James, S.L. & Nacy, C. Effector functions of activated macrophages against parasites. Curr. Opin. Immunol. 5, 518–523 (1993).

    Article  CAS  Google Scholar 

  35. Oswald, I.P., Wynn, T.A., Sher, A. & James, S.L. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc. Natl. Acad. Sci. USA 89, 8676–8680 (1992).

    Article  CAS  Google Scholar 

  36. James, S.L. & Glaven, J. Macrophage cytotoxicity against schistosomula of Schistosoma mansoni involves arginine-dependent production of reactive nitrogen intermediates. J. Immunol. 143, 4208–4212 (1989).

    CAS  PubMed  Google Scholar 

  37. Cheever, A.W. A comparative study of Schistosoma mansoni infections in mice, gerbils, multimammate rats and hamsters. Ii. qualitative pathological differences. Am. J. Trop. Med. Hyg. 14, 227–238 (1965).

    Article  CAS  Google Scholar 

  38. von Lichtenberg, F. & Byram, J.E. Pulmonary cell reactions in natural and acquired host resistance to Schistosoma mansoni. Am. J. Trop. Med. Hyg. 29, 1286–1300 (1980).

    Article  CAS  Google Scholar 

  39. Sher, A., Correa-Oliveira, R., Hieny, S. & Hussain, R. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. IV. analysis of the role of IgE antibodies and mast cells. J. Immunol. 131, 1460–1465 (1983).

    CAS  PubMed  Google Scholar 

  40. Aban, J.L. et al. A fatty acid binding protein from Fasciola hepatica induced protection in C57/BL mice from challenge infection with Schistosoma bovis. Vet. Parasitol. 83, 107–121 (1999).

    Article  CAS  Google Scholar 

  41. Davis, R.S., Stephan, R.P., Chen, C.C., Dennis, G., Jr. & Cooper, M.D. Differential B cell expression of mouse Fc receptor homologs. Int. Immunol. 16, 1343–1353 (2004).

    Article  CAS  Google Scholar 

  42. Tsutsui, H. et al. IFN-γ-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J. Immunol. 157, 3967–3973 (1996).

    CAS  PubMed  Google Scholar 

  43. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  Google Scholar 

  44. Kitaura, J. et al. Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proc. Natl. Acad. Sci. USA 100, 12911–12916 (2003).

    Article  CAS  Google Scholar 

  45. Onishi, M. et al. Applications of retrovirus-mediated expression cloning. Exp. Hematol. 24, 324–329 (1996).

    CAS  PubMed  Google Scholar 

  46. Maenaka, K., van der Merwe, P.A., Stuart, D.I., Jones, E.Y. & Sondermann, P. The human low affinity Fcγ receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J. Biol. Chem. 276, 44898–44904 (2001).

    Article  CAS  Google Scholar 

  47. Campbell, P.A., Canono, B.P. & Drevets, D.A. in Current Protocol in Immunology (eds. Coligan, J. E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W) 14.6.1–14.6.13 (John Wiley & Sons, Hoboken, New Jersey, 1996).

    Google Scholar 

  48. Strong, P., Townsend, P., Mackay, R., Reid, K.B. & Clark, H.W. A recombinant fragment of human SP-D reduces allergic responses in mice sensitized to house dust mite allergens. Clin. Exp. Immunol. 134, 181–187 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Maenaka and S. Nakae for discussions and suggestions; T. Kawakami, T. Kitamura, H. Tsutsui, K. Nakanishi, G.R.A. Ehrhardt, Z. Pancer, H. Kubagawa and J.F. Kearney for reagents or mice; G.L. Gartland, M. Hotomi, L.A. Gartland and Y. Kubagawa for technical assistance; and B.R. Herrin, M. Flurry, A. Brookshire and D. Lang for help in manuscript preparation. Supported by the National Institutes of Health (AI 39816; K08 award AI55638 to R.S.D.), the Charles A. Dana Foundation Program in Human Immunology (R.S.D.) and the Howard Hughes Medical Institute (M.H. and M.D.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.H. designed and did experiments and prepared the manuscript; R.S.D. assisted in experimental design and manuscript preparation; W.D.F. did the surface plasmon resonance analysis; S.N. and K.S. did the structural analysis; H.Y. and K.K. did the glycosylation analysis; R.P.S. contributed to the PCR analysis; and M.D.C. contributed to the study design, data interpretation and manuscript preparation.

Corresponding author

Correspondence to Max D Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of polyclonal antibodies to FcγRIV. (PDF 32 kb)

Supplementary Fig. 2

Association of FcγRIV with FcRγ and enhancement of FcγRIV surface expression by FcRγ. (PDF 30 kb)

Supplementary Fig. 3

The 2.4G2 monoclonal antibody recognizes both FcγRIII and FcγRIV. (PDF 45 kb)

Supplementary Fig. 4

FcγRIV phosphorylation and association with Crk-L and PI3K. (PDF 23 kb)

Supplementary Fig. 5

Comparative analysis of the mouse and human Ig isotype-binding specificities for FcγRIII and FcγRIV. (PDF 75 kb)

Supplementary Fig. 6

The peritoneal cavity cells from C57BL/6, BALB/c, Fcgr3−/−, or Fcer1g−/− mice were stained with anti-CD11b, anti-Gr-1, and anti-B220/CD45R. (PDF 44 kb)

Supplementary Table 1

Comparison of FcγRIII and FcγRIV expression by different cell lines. (PDF 15 kb)

Supplementary Table 2

Ig binding affinities of FcγRIII and FcγRIV. (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, M., Davis, R., Fine, W. et al. IgEb immune complexes activate macrophages through FcγRIV binding. Nat Immunol 8, 762–771 (2007). https://doi.org/10.1038/ni1477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing