Intraepithelial lymphocytes: exploring the Third Way in immunology


Locally resident intraepithelial lymphocytes (IELs) are primarily T cells with potent cytolytic and immunoregulatory capacities, which they use to sustain epithelial integrity. Here, we consider that most IEL compartments comprise a variable mixture of two cell types: T cells primed to conventional antigen in the systemic compartment and T cells with ill-defined reactivities and origins, whose properties seem to place them mid-way between the adaptive and innate immune responses. We review the capacity of IELs to limit the dissemination of infectious pathogens and malignant cells and to control the infiltration of epithelial surfaces by systemic cells. An improved characterization of IELs would seem essential if we are to understand how immune responses and immunopathologies develop at body surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A hypothesis for the development of an epithelium-associated repertoire of autoreactive type b IELs.
Figure 2: A two-step model for IEL activation and IEL responses.
Figure 3: Interactions between IELs and target cells.


  1. 1

    Giddens, A. The Third Way: The renewal of social democracy (Polity Press, Cambridge, 1998).

  2. 2

    Weber, E. Uber den Mechanismus der Einsaugung des Speisesaftes beim Menschen und bei einigen tieren. Physiol. Wissenschaftliche Med. Archiv Anat. 400–402 (1847).

  3. 3

    Ferguson, A. Intraepithelial lymphocytes of the small intestine. Gut 18, 921–937 (1977).

  4. 4

    Ernst, P., Befus, A. & Bienenstock, J. Leukocytes in the intestinal epithelium: an unusual immunological compartment. Immunol. Today 6, 50–55 (1985).

  5. 5

    Klein, J. & Moseley, R. in Mucosal Immunology: Intraepithelial lymphocytes, advances in host defense mechanisms (eds Kiyono, H. & McGhee, J.) 33–60 (Raven Press, New York, 1993).

  6. 6

    Beagley, K. & Husband, A. Intraepithelial lymphocytes: origins, distribution, and function. Crit. Rev. Immunol. 18, 237–254 (1998).

  7. 7

    Yoshikai, Y. The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense. Immunol. Res. 20, 219–235 (1999).

  8. 8

    Fichtelius, K.-E. The mammalian equivalent to bursa Fabricii of birds. Exp. Cell Res. 46, 231–234 (1967).

  9. 9

    Guy-Grand, D., Griscelli, C. & Vassalli, P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur. J. Immunol. 4, 435–443 (1974).

  10. 10

    Meuwissen, S. et al. Analysis of the lympho-plasmacytic infiltrate in Crohn's disease with special reference to identification of lymphocyte subpopulations. Gut 17, 770–780 (1976).

  11. 11

    Guy-Grand, D., Griscelli, C. & Vassalli, P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J. Exp. Med. 148, 1661–1677 (1978).

  12. 12

    Davies, M. & Parrott, D. The early appearance of specific cytoxic T cells in murine gut mucosa. Clin. Exp. Immunol. 42, 273–279 (1980).

  13. 13

    Tagliabue, A., Befus, A., Clark, D. & Bienenstock, J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J. Exp. Med. 155, 1785–1796 (1982).

  14. 14

    Klein, J. & Kagnoff, M. Nonspecific recruitment of cytoxic effector cells in the intestinal mucosa of antigen primed mice. J. Exp. Med. 160, 1931–1936 (1984).

  15. 15

    Ernst, P., Clark, D., Rosenthal, K., Befus, A. & Bienenstock, J. Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte populations. J. Immunol. 136, 2121–2126 (1986).

  16. 16

    Klein, J. R. Ontogeny of the Thy-1-, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa. J. Exp. Med. 164, 309–314 (1986).

  17. 17

    Viney, J., Kilshaw, P. & MacDonald, T. Cytotoxic αβ+ and γ/δ + T cells in murine intestinal epithelium. Eur. J. Immunol. 20, 1623–1626 (1990).

  18. 18

    Holtmeier, W. et al. The TCRδ repertoire in normal human skin is restricted and distinct from the TCRδ repertoire in the peripheral blood. J. Invest. Dermatol. 116, 275–280 (2001).

  19. 19

    Jarry, A., Cerf-Bensussan, N., Brousse, N., Seiz, F. & Guy-Grand, D. Subsets of CD3+ and CD3- lymphocytes isolated from normal human gut epithelium display phenotypic features different from their counterparts in peripheral blood. Eur. J. Immunol. 20, 1097–1103 (1990).

  20. 20

    Stingl, G. et al. Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor γ chain. Proc. Natl Acad. Sci. USA 84, 4586–4590 (1987).

  21. 21

    Asarnow, D. et al. Limited diversity of γ δ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

  22. 22

    Itohara, S., Nakanish, N., Kanagawa, O., Kube, R. & Tonegawa, S. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γ/δ T cells during thymic ontogeny and in peripheral lymphoid organs. Proc. Natl Acad. Sci. USA 86, 5094–5098 (1989).

  23. 23

    Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

  24. 24

    Bucy, P., Chen, C. L., Cihak, J., Losch, U. & Cooper, M. Avian T cells expressing γ/δ receptors localize in the splenic sinusoids and the intestinal epithelium. J. Immunol. 141, 2200–2205 (1988).

  25. 25

    Goodman, T. & Lefrancois, L. Expression of the γ/δ T cell receptor on intestinal CD8(+) intraepithelial lymphocytes. Nature 333, 855–858 (1998).

  26. 26

    Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. A. Rev. Immunol. 18, 975–1026 (2000).

  27. 27

    Rudzik, O. & Bienenstock, J. Isolation and characteristics of gut mucosal lymphocytes. Lab. Invest. 30, 260–266 (1974).

  28. 28

    Mayrhofer, G. Thymus-dependent and thymus-independent subpopulations of intestinal intraepithelial lymphocytes: a granulated subpopulation of probable bone marrow origin. Blood 55, 532–535 (1980).

  29. 29

    Camerini, V., Panwala, C. & Kronenberg, M. Regional specialization of the mucosal immune system: intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J. Immunol. 151, 1756–1776 (1993).

  30. 30

    Mosely, R. et al. Phenotype and TCR γ/δ variable gene repertoire of intestinal intraepithelial lymphocytes in wild mice (Mus musculus domesticus): abundance of Vγ1 transcripts and extensive δ gene diversity. Int. Immunol. 2, 231–238 (1994).

  31. 31

    Fujiura, Y. et al. Development of CD8aa+ intestinal intraepithelial T cell in β2-microglobulin- and/or TAP-deficient mice. J. Immunol. 156, 2710–2715 (1996).

  32. 32

    Corazza, N., Muller, S., Brunner, T., Kagi, D. & Mueller, C. Differential contribution of Fas- and perforin-mediated mechanisms to the cell-mediated cytotoxic activity of naïve and in vivo-primed intestinal intraepithelial lymphocytes. J. Immunol. 164, 398–403 (2000).

  33. 33

    Taguchi, T. et al. Novel function for intestinal intraepithelial lymphocytes: murine CD3+, γ/δ TCR+ T cells produce IFN-γ and IL-5. J. Immunol. 147, 3736–3744 (1991).

  34. 34

    Barrett, T., Gajewski, T., Danielpour, D. & Chang, E. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol. 149, 1124–1130 (1992).

  35. 35

    Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F. & Bout, D. Toxoplasma gondii oral infection induces specific cytoxic CD8α/β+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153, 4596–4603 (1994).

  36. 36

    Lundqvist, C., Melgar, S., Yeung, M. M., Hammarstrom, S. & Hammarstrom, M. L. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J. Immunol. 157, 1926–1934 (1996).

  37. 37

    Regnault, H., Cunano, H., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8α/α TCRα/β murine intestinal intraepithelial T lymphocytes evidence for random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

  38. 38

    Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

  39. 39

    Nanno, M. et al. Development of intestinal intraepithelial T lymphocytes is independent of Peyer's patches and lymph nodes in aly mutant mice. J. Immunol. 153, 2014–2020 (1994).

  40. 40

    Marsh, M. Studies of intestinal lymphoid tissue. II. Aspects of proliferation and migration of epithelial lymphocytes in the small intestine of mice. Gut 16, 674–682 (1975).

  41. 41

    Meader, R. & Landers, D. Electron and light microscopic observations on relationships between lymphocytes and intestinal epithelium. Am. J. Anat. 121, 763–774 (1967).

  42. 42

    Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

  43. 43

    Guy-Grand, D., DiSanto, J., Henchez, P., Malassis-Seris, M. & Vassalli, P. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL12, IFNγ, TNF) in the induction of epithelial cell death and renewal. J. Immunol. 28, 730–744 (1998).

  44. 44

    Camerini, V. et al. Generation of intestinal mucosal lymphocytes in scid mice reconstituted with mature, thymus-derived T cells. J. Immunol. 160, 2608–2618 (1998).

  45. 45

    Lefrancois, L. et al. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response. J. Exp. Med. 189, 1631–1638 (1999).

  46. 46

    Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67, 3504–3511 (1999).

  47. 47

    Dharakul, T., Rott, L. & Greeenberg, H. B. Recovery from chronic rotavirus infection with mice with severe combined immunodeficiency: virus clearance mediated by adoptive transfer of immune CD8+ T lymphocytes. J. Virol. 64, 4375–4382 (1990).

  48. 48

    Lepage, A. C., Buzoni-Gatel, D., Bout, D. T. & Kasper, L. H. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161, 4902–4908 (1998).

  49. 49

    Muller, S., Buhler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during and acute virus infection. J. Immunol. 164, 1986–1994 (2000).

  50. 50

    Buzoni-Gatel, D. et al. Intraepithelial lymphocytes traffic to the intestine and enhance resistance to Toxoplasma gondii oral infection. J. Immunol. 162, 5846–5852 (1999).

  51. 51

    Agace, W. W. et al. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur. J. Immunol. 30, 819–826 (2000).

  52. 52

    Kunkel, E. J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–767 (2000).

  53. 53

    Shibahara, T., Wilcox, J. N., Couse, T. & Madara, J. L. Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 120, 60–70 (2001).

  54. 54

    Agace, W. W., Higgins, J. M., Sadasiven, B., Brenner, M. B. & Parker, C. M. T-lymphocyte-epithelial-cell interactions: integrin αE(CD103) β7, LEEP-CAM and chemokines. Curr. Opin. Cell Biol. 12, 563–568 (2000).

  55. 55

    Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

  56. 56

    Masopust, D., Jiang, J., Shen, H. & Lefrancois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus Infection. J. Immunol. 166, 2348–2356 (2001).

  57. 57

    Slavin, R. & Santos, G. The graft versus host reaction in man after bone marrow transplantation: pathology, pathogenesis, clinical features, and implication. Clin. Immunol. Immunopathol. 1, 472–498 (1973).

  58. 58

    Mowat, A. & Ferguson, A. Intraepithelial lymphocyte count and crypt hyperplasia measure the mucosal component of the graft-versus-host reaction in mouse small intestine. Gastroenterology 83, 417–423 (1982).

  59. 59

    Rocha, B., Vassalli, P. & Guy-Grand, D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486 (1991).

  60. 60

    Rocha, B., Vassalli, P. & Guy-Grand, D. Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J. Exp. Med. 180, 681–686 (1994).

  61. 61

    Sydora, B., Brossay, I., Hagenbaugh, A., Kronenberg, M. & Cheroutre, H. TAP-independent selection of CD8+ intestinal intraepithelial lymphocytes. J. Immunol. 156, 4209–4216 (1996).

  62. 62

    Triebel, F. & Hercend, T. Subpopulations of human peripheral T γδ lymphocytes. Immunol. Today 10, 186–188 (1989).

  63. 63

    Deusch, K. et al. A major fraction of human intra-epithelial lymphocytes simultaneously expresses the γδ T cell receptor, the CD8 accessory molecule, and preferentially uses the Vδ1 gene segment. Eur. J. Immunol. 21, 1053–1059 (1991).

  64. 64

    Mosley, R., Wang, J., Hamad, M. & Klein, J. Functional heterogeneity of murine intestinal intraepithelial lymphocytes: studies using TCR-αβ+ IEL lines and fresh IEL isolates reveal multiple cytotoxic subsets differentiated by CD5, CD8α/α, and CD8α/β expression. Dev. Comp. Immunol. 18, 155–164 (1994).

  65. 65

    Ferguson, A. & Parrott, D. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin. Exp. Immunol. 12, 477–488 (1972).

  66. 66

    Ropke, C. & Everett, N. Kinetics of intraepithelial lymphocytes in the small intestine of thymus-deprived mice and antigen-deprived mice. Anat. Rec. 185, 101–108 (1976).

  67. 67

    MacDonald, T. & Ferguson, A. Small intestinal architecture and protozoal infection in mice. Gastroenterology 74, 496–500 (1978).

  68. 68

    Bandeira, A. et al. Localization of γδ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

  69. 69

    Findly, R. C., Roberts, S. J. & Hayday, A. C. Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. Eur. J. Immunol. 23, 2557–2564 (1993).

  70. 70

    Smith, A. L. & Hayday, A. C. An αβ T-cell-independent immunoprotective response towards gut coccidia is supported by γδ cells. Immunology 101, 325–332 (2000).

  71. 71

    Janeway, C. A., Jones, B. & Hayday, A. Specificity and function of T cells bearing γ δ receptors. Immunol. Today 9, 73–76 (1988).

  72. 72

    Rocha, B., von Boehmer, H. & Guy-Grand, D. Selection of intraepithelial lymphocytes with CD8α/α co-receptors by self-antigen in the murine gut. Proc. Natl Acad. Sci. USA 89, 5336–5340 (1992).

  73. 73

    Poussier, P., Edouard, P., Lee, C., Binnie, M. & Julius, M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med. 176, 187–199 (1992).

  74. 74

    Poussier, P. & Julius, M. Thymus-independent T cell development and selection in the intestinal epithelium. A. Rev. Immunol. 145, 521–553 (1994).

  75. 75

    Lefrancois, L. & Olson, S. Cutting edge: reconsitution of the extrathymic intestinal T cell compartment in the absence of irradiation. J. Immunol. 159, 538–541 (1997).

  76. 76

    Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit(+) IL-7R(+) Thy1(+) lympho-hempoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

  77. 77

    Laky, K. et al. Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer's patches. J. Exp. Med. 191, 1569–1580 (2000).

  78. 78

    Dunon, D., Cooper, M. & Imhof, B. Thymic origin of embryonic intestinal γ/δ T cells. J. Exp. Med. 177, 257–263 (1993).

  79. 79

    Allison, J. & Havran, W. The immunobiology of T cells with invariant γ/δ antigen receptors. A. Rev. Immunol. 9, 679–705 (1991).

  80. 80

    Lin, T. et al. Autospecific γ/δ thymocytes that escape negative selection find sanctuary in the intestine. J. Clin. Invest. 104, 1297–1305 (1999).

  81. 81

    Guehler, S. R., Finch, R. J., Bluestone, J. A. & Barrett, T. A. Increased threshold for TCR-mediated signaling controls self reactivity of intraepithelial lymphocytes. J. Immunol. 160, 5341–5346 (1998).

  82. 82

    Park, S. H. et al. Selection and expansion of CD8α/α(+) T cell receptor α/β(+) intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and non-classical CD1 molecules. J. Exp. Med. 190, 885–890 (1999).

  83. 83

    Das, G. & Janeway, C. A. Jr Development of CD8α/α and CD8α/β T cells in major histocompatibility complex class I-deficient mice. J. Exp. Med. 190, 881–884 (1999).

  84. 84

    Das, G. et al. Qa-2-dependent selection of CD8 α/α T cell receptor α/β(+) cells in murine intestinal intraepithelial lymphocytes. J. Exp. Med. 192, 1521–1528 (2000).

  85. 85

    Fragoso, G. et al. Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infect. Immun. 66, 760–764 (1997).

  86. 86

    Shires, J., Theodoridis, E. & Hayday, A. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

  87. 87

    Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class IB molecule. Science 287, 314–316 (2000).

  88. 88

    Correa, I. et al. Most γδ T cells develop normally in β2-microglobulin-deficient mice. Proc. Natl Acad. Sci. USA 89, 653–657 (1992).

  89. 89

    Groh, B., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

  90. 90

    Bauer, S. et al. Activation of NK cells and T cells by NKG2d, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

  91. 91

    Diefenbach, A., Jamieson, A., Liu, S., Shastri, N. & Raulet, D. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

  92. 92

    Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

  93. 93

    Tsujimura, K. et al. The binding of thymus leukemia (TL) antigen tetramers to normal intestinal intraepithelial lymphocytes and thymocytes. J. Immunol. 167, 759–764 (2001).

  94. 94

    Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

  95. 95

    Shiohara, T., Moriya, N., Hayakawa, J., Itohara, S. & Ishikawa, H. Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor δ gene–mutant mice. J. Exp. Med. 183, 1483–1489 (1996).

  96. 96

    Roberts, S. J. et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl Acad. Sci. USA 93, 11774–1179 (1996).

  97. 97

    Fujihashi, K. et al. Regulatory function for murine intraepithelial lymphocytes. Two subsets of CD3+, T cell receptor-1+ intraepithelial lymphocyte T cells abrogate oral tolerance. J. Immunol. 145, 2010–2019 (1990).

  98. 98

    Ke, Y., Pearce, K., Lake, J. P., Ziegler, K. H. & Kapp, J. A. γδ T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158, 3610–3618 (1997).

  99. 99

    Boismenu, R. & Havran, W. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

  100. 100

    Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

  101. 101

    Fahrer, A. et al. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc Natl Acad. Sci. USA 98, 10261–10266 (2001).

  102. 102

    Ferguson, A. & Murray, D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 12, 988–994 (1971).

  103. 103

    Hayday, A. et al. Intraepithelial γ/δ + T cells in natural infection and in coeliac disease: protectos of epithelial integrity and mediators of immune regulation – a hypothesis. 6th Int. Proc. Coeliac Disease 46–57 (Oak Tree Press, Dublin, 1994).

  104. 104

    Havran, W., Chien, Y. & Allison, J. Recognition of self antigens by skin derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

  105. 105

    Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 10. 1126/1063916 (Science Express, 2001).

  106. 106

    Matsuda, S., Kudoh, S. & Katayama, S. Enhanced formation of Azoxymethane-induced colorectal adenocarcinoma in γ/δ T lymphocyte-deficient mice. J. Cancer Res. 92, 880–885 (2001).

  107. 107

    Coussens, L. & Werb, Z. Inflammatory cells and cancer. Think different! J. Exp. Med. 193, 23–26 (2001).

  108. 108

    Kilshaw, P. & Murant, S. Expression and regulation of β7 integrins on muse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591–2597 (1991).

  109. 109

    Boismenu, R., Feng, L., Xia, Y. Y., Chang, J. C. & Havran, W. L. Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157, 985–992 (1996).

  110. 110

    Young, J. D. et al. Thymosin β4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nature Med. 5, 1424–1427 (1999).

  111. 111

    Rief, K. & Cyster, J. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164, 4720–4729 (2000).

  112. 112

    Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745–755 (2000).

  113. 113

    Darlington, D. & Rogers, W. Epithelial lymphocytes in the small intestine of the mouse. J. Anat. 100, 813–830 (1966).

  114. 114

    Yamamoto, M. et al. Cytokine synthesis and apoptosis by intestinal intraepithelial lymphocytes: signaling of high-density αβ and γδ T cells via T cell receptor-CD3 complex results in interferon-γ and interleukin-5 production, while low-density T cells undergo DNA fragmentation. Eur. J. Immunol. 24, 1301–1306 (1994).

  115. 115

    Sydora, B. et al. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J. Immunol. 150, 2179–2191 (1993).

  116. 116

    Ohteki, T. & MacDonald, H. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. Eur. J. Immunol. 23, 1251–1255 (1993).

  117. 117

    Vinay, D.S. & Kwon, B.S. Role of 4–1BB in immune responses. Semin. Immunol. 10, 481–489 (1998).

  118. 118

    Anumanthan, A. et al. Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J. Immunol. 161, 2780–2790 (1998).

  119. 119

    Takahashi, C., Mittler, R. S. & Vella, A. T. Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

  120. 120

    Boismenu, R. & Havran, W. An innate view of γ δ T cells. Curr. Opin. Immunol. 9, 57–63 (1997).

  121. 121

    Tice, D. Ontogeny of NK activity in rat small bowel. Transplant. Proc. 22, 2458–2495 (1990).

  122. 122

    Guy-Grand, D. et al. Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J. Exp. Med. 180, 673–679 (1994).

  123. 123

    Eisenbraum, M. D., Mosley, R. L., Teitelbaum, D. H. & Miller, R. A. Altered development of intestinal intraepithelial lymphocytes in P-glycoprotein deficient mice. Dev. Comp. Immun. 24, 783–795 (2000).

  124. 124

    Puddington, L., Olson, S. & Lefrancois, L. Interations between stem cell factor and c-kit are required for intestinal immune system homeostasis. Immunity 1, 733–739 (1994).

  125. 125

    Page, S. T., van Oers, N. S. C., Perlmutter, R. M., Weiss, A. & Pullen, A. M. Differential contribution of lck and fyn protein tyrosine kinases to intraepithelial lymphocyte development. Eur J. Immunol 27, 554–562 (1997).

Download references


We thank S. Creighton and J. Cridland for expert assistance and R. Tigelaar, J. Lewis, M. Girardi, A. Turner, P. Kilshaw and D. Oppenheim for critical discussions. Supported the Wellcome Trust, the NIH and the Dunhill Medical Trust.

Author information

Correspondence to Adrian Hayday.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayday, A., Theodoridis, E., Ramsburg, E. et al. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2, 997–1003 (2001).

Download citation

Further reading