Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The costimulation-regulated duration of PKB activation controls T cell longevity

A Corrigendum to this article was published on 01 November 2004


A brief antigenic stimulus can promote T cell proliferation, but the duration and nature of intracellular signals required for survival are unclear. Here we show that in the absence of OX40 costimulation, antigen-activated CD4+ cells are short-lived because the activity of protein kinase B (PKB; also known as Akt) is not maintained over time. Activated T cells that express a dominant-negative variant of PKB also undergo apoptosis, reproducing the OX40-deficient phenotype. In contrast, an active form of PKB prevents downregulation of antiapoptotic proteins in OX40-deficient T cells, rescues antigen-induced cell survival in vivo, and controls inflammation in recall responses. Thus, sustained and periodic PKB signaling has an integral role in regulating T cell longevity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: OX40 signals maintain PKB phosphorylation over time and are required for long-term survival of antigen-stimulated CD4+ cells.
Figure 2: OX40 signals sustain PKB kinase activity.
Figure 3: Retroviral transduction of OX40-deficient T cells with active PKB reverses their survival defect.
Figure 4: PKB regulates the expression of Bcl-xL, Bcl-2 and Bfl-1 and suppresses apoptosis.
Figure 5: PKB restores the survival of OX40-deficient T cells in secondary responses in vitro.
Figure 6: Sustained PKB controls T cell survival in vivo.
Figure 7: Sustained PKB does not alter T cell reactivity in vivo.
Figure 8: Sustained PKB restores the ability of OX40-deficient T cells to promote lung inflammation.


  1. 1

    Weiss, A., Shields, R., Newton, M., Manger, B. & Imboden, J. Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J. Immunol. 138, 2169–2176 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    CAS  Article  Google Scholar 

  3. 3

    van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Rogers, P.R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Cooper, D., Bansal-Pakala, P. & Croft, M. 41BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur. J. Immunol. 32, 521–529 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Boise, L.H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Dahl, A.M. et al. Expression of bcl-XL restores cell survival, but not proliferation or effector differentiation, in CD28-deficient T lymphocytes. J. Exp. Med. 191, 2031–2038 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Salek-Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 315–324 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Gramaglia, I., Weinberg, A.D., Lemon, M. & Croft, M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol. 161, 6510–6517 (1998).

    CAS  PubMed  Google Scholar 

  13. 13

    Ohshima, Y. et al. Expression and function of OX40 ligand on human dendritic cells. J. Immunol. 159, 3838–3848 (1997).

    CAS  PubMed  Google Scholar 

  14. 14

    Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997).

    CAS  Article  Google Scholar 

  15. 15

    del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Parsons, M.J. et al. Expression of active protein kinase B in T cells perturbs both T and B cell homeostasis and promotes inflammation. J. Immunol. 167, 42–48 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Jones, R.G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor κB activation, and Bcl-XL levels in vivo. J. Exp. Med. 191, 1721–1734 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Rathmell, J.C., Elstrom, R.L., Cinalli, R.M. & Thompson, C.B. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33, 2223–2232 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Parry, R.V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur. J. Immunol. 27, 2495–2501 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol. 2, 37–44 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Jones, R.G. et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med. 196, 335–348 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 3627–3632 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Kelly, E., Won, A., Refaeli, Y. & Van Parijs, L. IL-2 and related cytokines can promote T cell survival by activating AKT. J. Immunol. 168, 597–603 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Franke, T.F., Kaplan, D.R., Cantley, L.C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Songyang, Z., Baltimore, D., Cantley, L.C., Kaplan, D.R. & Franke, T.F. Interleukin 3-dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 11345–11350 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Jember, A.G., Zuberi, R., Liu, F.T. & Croft, M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J. Exp. Med. 193, 387–392 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  Google Scholar 

  32. 32

    Linton, P.J. et al. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J. Exp. Med. 197, 875–883 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Kim, M.Y. et al. CD4+CD3 accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Arimura, Y. et al. A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in Th cells and regulates their responses. Int. Immunol. 14, 555–566 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Pugazhenthi, S. et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J. Biol. Chem. 275, 10761–10766 (2000).

    CAS  Article  Google Scholar 

  36. 36

    Burgering, B.M. & Kops, G.J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Pap, M. & Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273, 19929–19932 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Stahl, M. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. 168, 5024–5031 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Dijkers, P.F. et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B–enhanced cell survival through maintenance of mitochondrial integrity. J. Cell Biol. 156, 531–542 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Frauwirth, K.A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4, 680–686 (2003).

    CAS  Article  Google Scholar 

  48. 48

    Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants from the NIH (CA91827 and AI50498) and the Sandler Program for Asthma Research (to Mi.C.). This is manuscript number 534 from the La Jolla Institute for Allergy and Immunology.

Author information



Corresponding author

Correspondence to Michael Croft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, J., Salek-Ardakani, S., Rogers, P. et al. The costimulation-regulated duration of PKB activation controls T cell longevity. Nat Immunol 5, 150–158 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing