Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXP3 protects conventional human T cells from premature restimulation-induced cell death

Abstract

The adaptive immune response relies on specific apoptotic programs to maintain homeostasis. Conventional effector T cell (Tcon) expansion is constrained by both forkhead box P3 (FOXP3)+-regulatory T cells (Tregs) and restimulation-induced cell death (RICD), a propriocidal apoptosis pathway triggered by repeated stimulation through the T-cell receptor (TCR). Constitutive FOXP3 expression protects Tregs from RICD by suppressing SLAM-associated protein (SAP), a key adaptor protein that amplifies TCR signaling strength. The role of transient FOXP3 induction in activated human CD4 and CD8 Tcons remains unresolved, but its expression is inversely correlated with acquired RICD sensitivity. Here, we describe a novel role for FOXP3 in protecting human Tcons from premature RICD during expansion. Unlike FOXP3-mediated protection from RICD in Tregs, FOXP3 protects Tcons through a distinct mechanism requiring de novo transcription that does not require SAP suppression. Transcriptome profiling and functional analyses of expanding Tcons revealed that FOXP3 enhances expression of the SLAM family receptor CD48, which in turn sustains basal autophagy and suppresses pro-apoptotic p53 signaling. Both CD48 and FOXP3 expression reduced p53 accumulation upon TCR restimulation. Furthermore, silencing FOXP3 expression or blocking CD48 decreased the mitochondrial membrane potential in expanding Tcons with a concomitant reduction in basal autophagy. Our findings suggest that FOXP3 governs a distinct transcriptional program in early-stage effector Tcons that maintains RICD resistance via CD48-dependent protective autophagy and p53 suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    CAS  PubMed  Google Scholar 

  2. Snow, A. L., Pandiyan, P., Zheng, L., Krummey, S. M. & Lenardo, M. J. The power and the promise of restimulation-induced cell death in human immune diseases. Immunol. Rev. 236, 68–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Snow, A. L. et al. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J. Clin. Invest. 119, 2976–2989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bassiri, H., Janice Yeo, W. C., Rothman, J., Koretzky, G. A. & Nichols, K. E. X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Immunol. Res. 42, 145–159 (2008).

    CAS  PubMed  Google Scholar 

  5. Hislop, A. D. et al. Impaired Epstein-Barr virus-specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family-positive B-cell targets. Blood 116, 3249–3257 (2010).

    CAS  PubMed  Google Scholar 

  6. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  7. Combadiere, B. et al. Qualitative and quantitative contributions of the T cell receptor zeta chain to mature T cell apoptosis. J. Exp. Med. 183, 2109–2117 (1996).

    CAS  PubMed  Google Scholar 

  8. She, J., Matsui, K., Terhorst, C. & Ju, S. T. Activation-induced apoptosis of mature T cells is dependent upon the level of surface TCR but not on the presence of the CD3 zeta ITAM. Int. Immunol. 10, 1733–1740 (1998).

    CAS  PubMed  Google Scholar 

  9. Lenardo, M. J. Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    CAS  PubMed  Google Scholar 

  10. Boehme, S. A. & Lenardo, M. J. Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur. J. Immunol. 23, 1552–1560 (1993).

    CAS  PubMed  Google Scholar 

  11. Schmitz, I. et al. An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J. Immunol. 171, 2930–2936 (2003).

    CAS  PubMed  Google Scholar 

  12. Muppidi, J. R. & Siegel, R. M. Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat. Immunol. 5, 182–189 (2004).

    CAS  PubMed  Google Scholar 

  13. Chen, G. et al. Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur. J. Immunol. 37, 663–674 (2007).

    CAS  PubMed  Google Scholar 

  14. Katz, G., Krummey, S. M., Larsen, S. E., Stinson, J. R. & Snow, A. L. SAP facilitates recruitment and activation of LCK at NTB-A receptors during restimulation-induced cell death. J. Immunol. 192, 4202–4209 (2014).

    CAS  PubMed  Google Scholar 

  15. Ruffo, E. et al. Inhibition of diacylglycerol kinase alpha restores restimulation-induced cell death and reduces immunopathology in XLP-1. Sci. Transl. Med. 8, 321ra7 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Shinozaki, K. et al. Activation-dependent T cell expression of the X-linked lymphoproliferative disease gene product SLAM-associated protein and its assessment for patient detection. Int Immunol. 14, 1215–1223 (2002).

    CAS  PubMed  Google Scholar 

  17. Mehrle, S., Frank, S., Schmidt, J., Schmidt-Wolf, I. G. & Marten, A. SAP and SLAM expression in anti-CD3 activated lymphocytes correlates with cytotoxic activity. Immunol. Cell Biol. 83, 33–39 (2005).

    CAS  PubMed  Google Scholar 

  18. Katz, G. et al. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression. Cell Immunol. 327, 54–61 (2018).

  19. Fritzsching, B. et al. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand-but not to TCR-mediated cell death. J. Immunol. 175, 32–36 (2005).

    CAS  PubMed  Google Scholar 

  20. Bhaskaran, N. et al. Transforming growth factor-beta1 sustains the survival of Foxp3(+) regulatory cells during late phase of oropharyngeal candidiasis infection. Mucosal Immunol. 9, 1015–1026 (2016).

    CAS  PubMed  Google Scholar 

  21. Weiss, E. M. et al. Foxp3-mediated suppression of CD95L expression confers resistance to activation-induced cell death in regulatory T cells. J. Immunol. 187, 1684–1691 (2011).

    CAS  PubMed  Google Scholar 

  22. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    CAS  PubMed  Google Scholar 

  23. Miyao, T. et al. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    CAS  PubMed  Google Scholar 

  24. Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. & Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  25. McMurchy, A. N. et al. A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood 121, 1265–1275 (2013).

    CAS  PubMed  Google Scholar 

  26. Torgerson, T. R. et al. FOXP3 inhibits activation-induced NFAT2 expression in T cells thereby limiting effector cytokine expression. J. Immunol. 183, 907–915 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    CAS  PubMed  Google Scholar 

  28. Cavatorta, D. J., Erb, H. N. & Felippe, M. J. Activation-induced FoxP3 expression regulates cytokine production in conventional T cells stimulated with autologous dendritic cells. Clin. Vaccin. Immunol. 19, 1583–1592 (2012).

    CAS  Google Scholar 

  29. Ziegler, S. F. FOXP3: not just for regulatory T cells anymore. Eur. J. Immunol. 37, 21–23 (2007).

    CAS  PubMed  Google Scholar 

  30. Katz, G. & Snow, A. L. Fluorescence-activated cell sorting-based quantitation of T cell receptor restimulation-induced cell death in activated, primary human T cells. Methods Mol. Biol. 979, 15–23 (2013).

    CAS  PubMed  Google Scholar 

  31. Magg, T., Mannert, J., Ellwart, J. W., Schmid, I. & Albert, M. H. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur. J. Immunol. 42, 1627–1638 (2012).

    CAS  PubMed  Google Scholar 

  32. Cencioni, M. T. et al. FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death Dis. 6, e1785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Varadhachary, A. S., Perdow, S. N., Hu, C., Ramanarayanan, M. & Salgame, P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc. Natl Acad. Sci. USA 94, 5778–5783 (1997).

    CAS  PubMed  Google Scholar 

  34. Cruz, A. C. et al. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction. Nat. Commun. 7, 13895 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Snow, A. L. et al. Critical role for BIM in T cell receptor restimulation-induced death. Biol. Direct 3, 34 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    CAS  PubMed  Google Scholar 

  37. Wu, N. & Veillette, A. SLAM family receptors in normal immunity and immune pathologies. Curr. Opin. Immunol. 38, 45–51 (2016).

    CAS  PubMed  Google Scholar 

  38. Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sadlon, T. J. et al. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J. Immunol. 185, 1071–1081 (2010).

    CAS  PubMed  Google Scholar 

  40. McArdel, S. L., Brown, D. R., Sobel, R. A. & Sharpe, A. H. Anti-CD48 monoclonal antibody attenuates experimental autoimmune encephalomyelitis by limiting the number of pathogenic CD4+ T cells. J. Immunol. 197, 3038–3048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Elishmereni, M. & Levi-Schaffer, F. CD48: a co-stimulatory receptor of immunity. Int. J. Biochem Cell Biol. 43, 25–28 (2011).

    CAS  PubMed  Google Scholar 

  42. Pahima, H., Puzzovio, P. G. & Levi-Schaffer, F. 2B4 and CD48: a powerful couple of the immune system. Clin. Immunol. 204, 64–68 (2019).

  43. Ramaswamy, M. et al. Specific elimination of effector memory CD4+ T cells due to enhanced Fas signaling complex formation and association with lipid raft microdomains. Cell Death Differ. 18, 712–720 (2011).

    CAS  PubMed  Google Scholar 

  44. Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. White, E. Autophagy andp53. Cold Spring Harb. Perspect. Med. 6, a026120 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corrado, M. et al. Macroautophagy inhibition maintains fragmented mitochondria to foster T cell receptor-dependent apoptosis. EMBO J. 35, 1793–1809 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, S. et al. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy 11, 560–572 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    CAS  PubMed  Google Scholar 

  50. Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    CAS  PubMed  Google Scholar 

  51. Cencioni, M. T. et al. FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death Dis. 6, e1741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi, G. et al. Unlike Th1, Th17 cells mediate sustained autoimmune inflammation and are highly resistant to restimulation-induced cell death. J. Immunol. 183, 7547–7556 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weant, A. E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28, 218–230 (2008).

    CAS  PubMed  Google Scholar 

  54. Muhammad, A. et al. Sequential cooperation of CD2 and CD48 in the buildup of the early TCR signalosome. J. Immunol. 182, 7672–7680 (2009).

    CAS  PubMed  Google Scholar 

  55. Gonzalez-Cabrero, J. et al. CD48-deficient mice have a pronounced defect in CD4(+) T cell activation. Proc. Natl Acad. Sci. USA 96, 1019–1023 (1999).

    CAS  PubMed  Google Scholar 

  56. Dowling, S. D. & Macian, F. Autophagy and T cell metabolism. Cancer Lett. 419, 20–26 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pua, H. H., Guo, J., Komatsu, M. & He, Y. W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    CAS  PubMed  Google Scholar 

  59. McArdel, S. L., Terhorst, C. & Sharpe, A. H. Roles of CD48 in regulating immunity and tolerance. Clin. Immunol. 164, 10–20 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Abadia-Molina, A. C. et al. CD48 controls T-cell and antigen-presenting cell functions in experimental colitis. Gastroenterology 130, 424–434 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Lenardo for generously providing access to anonymous healthy donor buffy coat samples from the NIH Blood Bank. We also thank Robert Kortum, Brian Schaefer, Chou-Zen Giam, Edward Mitre, and Jason Lees for helpful discussions. We thank Kateryna Lund and Kheem Bhist for flow cytometry assistance and support. This work was funded by grants from the National Institutes of Health (1R01GM105821) and Uniformed Services University.

Author information

Authors and Affiliations

Authors

Contributions

K.V. and A.L.S. conceptualized the project. K.V. designed and conducted the experiments, analyzed the results, graphed and visualized the data, and wrote the paper. N.M.L., C.L.D., A.R.S. and G.S. conducted the RNA-seq experiments and analyses. C.L., C.R.L., B.D., S.A. and B.M.B. assisted with various experiments. A.L.S. and C.L.D. reviewed and edited the paper and supervised the project.

Corresponding author

Correspondence to Andrew L. Snow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, K., Lake, C., Luthers, C.R. et al. FOXP3 protects conventional human T cells from premature restimulation-induced cell death. Cell Mol Immunol 18, 194–205 (2021). https://doi.org/10.1038/s41423-019-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0316-z

Keywords

This article is cited by

Search

Quick links