Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The 21- and 23-kD forms of TCRζ are generated by specific ITAM phosphorylations

Abstract

The T cell receptor (TCR) ζ subunit contains three immunoreceptor tyrosine-based activation motifs (ITAMs) that translate effective extracellular ligand binding into intracellular signals by becoming phosphorylated into 21- and 23-kD forms. We report here that the 21-kD form of TCRζ is generated by phosphorylation of the tyrosines in the second and third ITAMs, whereas the 23-kD form is formed by the additional phosphorylation of the membrane-proximal ITAM tyrosines. The stable formation of the 21- and 23-kD species requires the binding of the tandem SH2 domains of ZAP-70. We also report that TCR-mediated signaling processes can proceed independently of either the 21- or 23-kD species of TCRζ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of phosphorylated TCRζ derivatives is dependent on ZAP-70 SH2 domains.
Figure 2: Phosphorylation of all six tyrosine residues generates the 23-kD TCRζ species.
Figure 3: Specific phosphorylation of ITAM 2 and 3 yields the 21-kD TCRζ species.
Figure 4: TCR signal transduction in T cells expressing various TCRζ substitution mutants.
Figure 5: Formation of the 21-kD TCRζ requires phosphorylation of tyrosines 3–6.
Figure 6: ITAM 1 tyrosines not necessary for constitutively phosphorylated TCRζ expression.

Similar content being viewed by others

References

  1. Ashwell, J. D. & Klausner, R. D. Genetic and mutational analysis of the T-cell antigen receptor. Ann. Rev. Immunol. 8, 139–167 (1990).

    Article  CAS  Google Scholar 

  2. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  3. Cambier, J. C. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol. Today 16, 110 (1995).

    Article  CAS  Google Scholar 

  4. Wange, R. L. & Samelson, L. E. Complex complexes: signaling at the TCR. Immunity 5, 197–205 (1996).

    Article  CAS  Google Scholar 

  5. Rudd, C. E. Adaptors and molecular scaffolds in immune cell signaling. Cell 96, 5–8 (1999).

    Article  CAS  Google Scholar 

  6. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  Google Scholar 

  7. Love, P. E. & Shores, E. W. ITAM multiplicity and thymocyte selection: how long can you go. Immunity 12, 591–597 (2000).

    Article  CAS  Google Scholar 

  8. van Oers, N. S. C., Killeen, N. & Weiss, A. ZAP-70 is constitutively associated with tyrosine phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1, 675–685 (1994).

    Article  CAS  Google Scholar 

  9. Wiest, D. L., Ashe, J. M., Abe, R., Bolen, J. B. & Singer, A. TCR activation of ZAP-70 is impaired in CD4+CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56lck. Immunity 4, 495–504 (1996).

    Article  CAS  Google Scholar 

  10. Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B. & Allen, P. M. Partial T cell signaling: altered phospho-ζ and lack of ZAP-70 recruitment in APL-induced T cell anergy. Cell 79, 913–922 (1994).

    Article  CAS  Google Scholar 

  11. Madrenas, J. et al. ζ phosphorylation without ZAP-70 activation induced by T cell receptor antagonists or partial agonists. Science 267, 515–518 (1995).

    Article  CAS  Google Scholar 

  12. Sloan-Lancaster, J. & Allen, P. M. Altered peptide ligand induced partial T cell activation: molecular mechanisms and role in T cell biology. Ann. Rev. Immunol. 14, 1–27 (1996).

    Article  CAS  Google Scholar 

  13. Malissen, B. Translating affinity into response. Science 281, 528–529 (1998).

    Article  CAS  Google Scholar 

  14. Smyth, L. A. et al. Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes. Proc. Natl Acad. Sci. USA 95, 8193–8198 (1998). Published erratum appears in Proc. Natl Acad. Sci. USA 95, 13348, 1998.

    Article  CAS  Google Scholar 

  15. Liu, H. & Vignali, D. A. Differential CD3 zeta phosphorylation is not required for the induction of T cell antagonism by altered peptide ligands. J. Immunol. 163, 599–602 (1999).

    CAS  Google Scholar 

  16. Koyasu, S. et al. Phosphorylation of multiple CD3 ζ tyrosine residues leads to formation of pp21 in vitro and in vivo. J. Biol. Chem. 267, 3375–3381 (1992).

    CAS  Google Scholar 

  17. Frank, S. et al. Mutagenesis of T cell antigen receptor ζ chain tyrosine residues. Effects on tyrosine phosphorylation and lymphokine production. J. Biol. Chem. 267, 13656–13660 (1992).

    CAS  Google Scholar 

  18. Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  19. Iwashima, M., Irving, B. A., van Oers, N. S. C., Chan, A. C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 (1994).

    Article  CAS  Google Scholar 

  20. Kadlecek, T. A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  Google Scholar 

  21. Baniyash, M., Garcia-Morales, P., Luong, E., Samelson, L. E. & Klausner, R. D. The T cell antigen receptor ζ chain is tyrosine phosphorylated upon activation. J. Biol. Chem. 263, 18225–18230 (1988).

    CAS  Google Scholar 

  22. Wegener, A.-M. K. et al. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 68, 83–95 (1992).

    Article  CAS  Google Scholar 

  23. Ardouin, L. et al. Crippling of CD3-ζ ITAMs does not impair T cell receptor signaling. Immunity 10, 409–420 (1999).

    Article  CAS  Google Scholar 

  24. Isakov, N. et al. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based motifs with varying affinity. J. Exp. Med. 181, 375–380 (1995).

    Article  CAS  Google Scholar 

  25. Hatada, M. H. et al. Molecular basis for the interactions of the protein tyrosine kinase ZAP-70 with the T cell receptor. Nature 377, 32–38 (1995).

    Article  CAS  Google Scholar 

  26. Bu, J.-Y., Shaw, A. S. & Chan, A. C. Analysis of the interaction of ZAP-70 and Syk protein tyrosine kinases with the T cell antigen receptor by plasmon resonance. Proc. Natl Acad. Sci. USA 92, 5106–5110 (1995).

    Article  CAS  Google Scholar 

  27. Love, P. E. et al. T cell development in mice that lack the ζ chain of the T cell antigen receptor complex. Science 261, 918–921 (1993).

    Article  CAS  Google Scholar 

  28. van Oers, N. S. C., Love, P., Shores, E. W. & Weiss, A. Regulation of T cell receptor signal transduction in murine thymocytes by multiple TCR ζ-chain signaling motifs. J. Immunol. 160, 163–170 (1998).

    CAS  Google Scholar 

  29. Shores, E. W. et al. Role of multiple TCR ζ chain signaling motifs in selection of the T cell repertoire. J. Exp. Med. 185, 893–900 (1997).

    Article  CAS  Google Scholar 

  30. Qian, D., Lev, S., van Oers, N. S. C., Schlessinger, J. & Weiss, A. Tyrosine phosphorylation of Pyk2 is selectively regulated by Fyn during TCR signaling. J. Exp. Med. 185, 1253–1259 (1997).

    Article  CAS  Google Scholar 

  31. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acid Res. 18, 5322 (1990).

    Article  CAS  Google Scholar 

  32. Qian, D., Mollenauer, M. & Weiss, A. Dominant-negative ZAP-70 inhibits T cell antigen receptor signaling. J. Exp. Med. 183, 611–620 (1995).

    Article  Google Scholar 

  33. van Oers, N. S. C., Killeen, N. & Weiss, A. Lck regulates the tyrosine phosphorylation of the TCR subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–1062 (1996).

    Article  CAS  Google Scholar 

  34. Jensen, W. A. et al. Qualitatively distinct signaling through T cell antigen receptor subunits. Eur. J. Immunol. 27, 707–716 (1997).

    Article  CAS  Google Scholar 

  35. Zhumabekov, T., Corbella, P., Toliani, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Methods 185, 133–140 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ritter for generation of mice; (dot)H. Nikaidoh and staff from the Children's Medical Center of Dallas; A. Weiss, D. Kioussis and M. Cobb for discussions; D. Kioussis for VA-CD2 transgenic constructs. This work was supported in part by a grant from the NIH (RO1 AI42953 to N. S. C. V. O.) and the Howard Hughes Medical Institute (C. A. S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai S. C. van Oers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Oers, N., Tohlen, B., Malissen, B. et al. The 21- and 23-kD forms of TCRζ are generated by specific ITAM phosphorylations. Nat Immunol 1, 322–328 (2000). https://doi.org/10.1038/79774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing