Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development

Abstract

Mutation or ablation of T cell factor 1 and lymphocyte enhancer factor 1 indicated involvement of the Wnt pathway in thymocyte development. The central effector of the Wnt pathway is β-catenin, which undergoes stabilization upon binding of Wnt ligands to frizzled receptors. We report here that conditional stabilization of β-catenin in immature thymocytes resulted in the generation of single positive T cells that lacked the αβ TCR and developed in the absence of pre-TCR signaling and TCR selection. Although active β-catenin induced differentiation in the absence of TCRs, its action was associated with reduced proliferation and survival when compared to developmental changes induced by the pre-TCR or the αβ TCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of β-catenin in the thymi of β-catThyΔex3 mice.
Figure 2: Activation of β-catenin in immature thymocytes altered thymocyte development.
Figure 3: T cell development proceeded independently of TCRβ-selection.
Figure 4: Activation of β-catenin rescued RAG-2−/−–induced developmental arrest.
Figure 5: Activation of β-catenin altered cell cycling and total thymocyte numbers.
Figure 6: Thymocytes expressing activated β-catenin show an apoptotic phenotype.

Similar content being viewed by others

References

  1. Shortman, K. & Wu, L. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, T. A. & Zlotnik, A. T cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  3. Di Santo, J. P. et al. The common cytokine receptor γ chain and the pre-T cell receptor provide independent but critically overlapping signals in early α/β T cell development. J. Exp. Med. 189, 563–574 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75, 283–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. von Boehmer, H. Lymphocyte survival and lineage commitment through positive selection in Great Experiments in Biology (eds. Lewin, B. and Pond, L.) at www.ergito.com (Ergito, 2001).

    Google Scholar 

  7. Schilham, M. W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161, 3984–3991 (1998).

    CAS  PubMed  Google Scholar 

  8. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. de Lau, W. & Clevers, H. LEF1 turns over a new leaf. Nature Genet. 28, 3–4 (2001).

    CAS  PubMed  Google Scholar 

  10. Staal, F. J. et al. Wnt signaling is required for thymocyte development and activates Tcf- 1 mediated transcription. Eur. J. Immunol. 31, 285–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Matsuzawa, S. & Reed, J. C. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell. 7, 915–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J. et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell. 7, 927–936 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Buer, J., Aifantis, I., DiSanto, J. P., Fehling, H. J. & von Boehmer, H. Role of different T cell receptors in the development of pre-T cells. J. Exp. Med. 185, 1541–1547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+mobilization and activation of NF-kB and NF-AT. Nature Immunol. 2, 403–409 (2001).

    Article  CAS  Google Scholar 

  18. Hoffman, E. S. et al. Productive T cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Moore, N. C., Anderson, G., Williams, G. T., Owen, J. J. & Jenkinson, E. J. Developmental regulation of bcl-2 expression in the thymus. Immunology 81, 115–119 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Newton, K., Harris, A. W. & Strasser, A. FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Haks, M. C., Krimpenfort, P., van den Brakel, J. H. & Kruisbeek, A. M. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11, 91–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Linette, G. P. et al. Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Mombaerts, P. et al. Mutations in T cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T cell receptor α gene in development of α β but not γ δ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Winandy, S., Wu, L., Wang, J. H. & Georgopoulos, K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J. Exp. Med. 190, 1039–1048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kabra, N. H., Kang, C., Hsing, L. C., Zhang, J. & Winoto, A. T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl Acad. Sci. USA 98, 6307–6312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walsh, C. M. et al. A role for FADD in T cell activation and development. Immunity 8, 439–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nacht, M. et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10, 2055–2066 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, D., Lenardo, M. J. & Zuniga-Pflucker, C. p53 prevents maturation to the CD4+CD8+ stage of thymo cyte differentiation in the absence of T cell receptor rearrangement. J. Exp. Med. 183, 1923–1928 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Nakajima, H. & Leonard, W. J. Role of Bcl-2 in α β T cell development in mice deficient in the common cytokine receptor γ-chain: the requirement for Bcl-2 differs depending on the TCR/MHC affinity. J. Immunol. 162, 782–790 (1999).

    CAS  PubMed  Google Scholar 

  34. Aifantis, I. et al. On the role of the pre-T cell receptor in αβ versus γδ T lineage commitment. Immunity 9, 649–655 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Wilson, C. Beard and S. Korsmeyer for the lck-cre mice; A. Siermann and the DFCI sorting facility for technical assistance; P. Sicinski, L. Haughn and C. Borowski for discussions and critical reading of the manuscript; and L. Holcomb for help in preparing the manuscript. F. G. and K. K. also thank Artemis for support. Supported by grants from the Ministry of Education, Science, Sports and Culture; Organization for Pharmaceutical Safety and Research, Japan; the Joint Research Fund between the University of Tokyo and Banyu Pharmaceutical Co; and NIH grants R01A145846 and R01AI47281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald von Boehmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounari, F., Aifantis, I., Khazaie, K. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2, 863–869 (2001). https://doi.org/10.1038/ni0901-863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing