Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?

Abstract

Autoimmune diseases remain one of the mysteries that perplex immunologists. What makes the immune system, which has evolved to protect an organism from foreign invaders, turn on the organism itself? A popular answer to this question involves the lymphoid network's primordial function: autoimmunity is a by-product of the immune response to microbial infection. For decades there have been tantalizing associations between infectious agents and autoimmunity: β-hemolytic streptococci and rheumatic fever; B3 Coxsackieviruses and myocarditis; Trypanosoma cruzi and Chagas' disease; diverse viruses and multiple sclerosis; Borrelia burgdorfii and Lyme arthritis; and B4 Coxsackievirus, cytomegalovirus or rubella and type 1 diabetes, to name the most frequently cited examples1. In addition, animal models have provided direct evidence that infection with a particular microbe can incite a particular autoimmune disease2. Nonetheless, many of the associations appear less than convincing and, even for those that seem to be on solid footing, there is no real understanding of the underlying mechanism(s).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Bob Crimi

Similar content being viewed by others

References

  1. Rose, N. R. & Mackay, I. R. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell. Mol. Life Sci. 57, 542–551 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Lawson, C. M. Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis. Cell. Mol. Life Sci. 57, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Wucherpfennig, K. W. Structural basis of molecular mimicry. J. Autoimmun. 16, 293–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Maverakis, E., van den Elzen, P. & Sercarz, E. E. Self-reactive T cells and degeneracy of T cell recognition: evolving concepts from sequence homology to shape mimicry and TCR flexibility. J. Autoimmun. 16, 201–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Rose, N. R. & Bona, C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol. Today 14, 426–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Fujinami, R. S. Can virus infections trigger autoimmune disease? J. Autoimmun. 16, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fairweather, D., Kaya, Z., Shellam, G. R., Lawson, C. M. & Rose, N. R. From infection to autoimmunity. J. Autoimmun. 16, 175–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Maier, B. et al. Multiple cross-reactive self–ligands for Borrelia burgdorferi-specific HLA-DR4-restricted T cells. Eur. J. Immunol. 30, 448–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hemmer, B. et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nature Med. 5, 1375–1382 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wucherpfennig, K. W. Structural basis of molecular mimicry. J. Autoimmun. 16, 293–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Maverakis, E., van den Elzen, P. & Sercarz, E. Self-reactive T cells and degeneracy of T cell recognition: evolving concepts-from sequence homology to shape mimicry and TCR flexiblity. J. Autoimmun. 16, 201–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Martin, R. et al. Molecular mimicry and antigen-specific T cell responses in multiple sclerosis and chronic CNS lyme disease. J. Autoimmun. 16, 187–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Steere, A.C., Gross, D., Meyer, A. L. & Huber, B. T. Autoimmune mechanisms in antibiotic treatment-resistant Lyme arthritis. J. Autoimmun. 16, 263–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sigal, L. Lyme arthritis: lessons learned and to be learned. Arthritis Rheum. 42, 1809–1812 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Steere, A. C. & Baxter-Lowe, L. A. Association of chronic, treatment-resistant Lyme arthritis with rheumatoid arthritis (RA) alleles. Arthritis Rheum. 41, S81 (1998).

  16. Kalish, R. A., Leong, J. M. & Steere, A. C. Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia bugdorferi. Infect. Immun. 61, 2774–2779 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalish, R. A., Leong, J. M. & Steere, A. C. Early and late antibody responses to full-length and truncated constructs of outer surface protein A of Borrelia burgdorferi in Lyme disease. Infect. Immun. 63, 2228–2235 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lengl-Janssen, B., Strauss, A. F., Steere, A. C. & Kamradt, T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A (OspA) in patients with treatment-resistant or treatment-responsive Lyme arthritis. J. Exp. Med. 180, 2069–2078 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Gross, D. M., Steere, A. C. & Huber, B. T. T helper 1 response is dominant and localized to the synovial fluid in patients with Lyme arthritis. J. Immunol. 160, 1022–1028 (1998).

    CAS  PubMed  Google Scholar 

  20. Yssel, H. et al. Borrelia burgdorferi activates a T helper type 1-like T cell subset in Lyme arthritis. J. Exp. Med. 174, 593–601 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Sigal, L. H. et al. A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. N. Engl. J. Med. 339, 216–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Steere, A. C. et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. N. Engl. J. Med. 339, 209–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gross, D. M. et al. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281, 703–706 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Hammer, J. et al. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, J. et al. Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer surface protein A of Borrelia burgdorferi. Arthritis Rheum. 42, 1813–1822 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, A. L. et al. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers. Proc. Natl Acad. Sci. USA 97, 11433–11438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trollmo, C., Meyer, A. L., Steere, A. C., Hafler, D. A. & Huber, B. T. Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1αL is a partial agonist for outer surface protein A–reactive T cells. J. Immunol. 166, 5286–5291 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Akin, E., Aversa, J. & Steere, A. C. Expression of adhesion molecules in synovia of patients with treatment-resistant Lyme arthritis. Infect. Immun. 69, 1774–1780 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gross, D. M. & Huber, B. T. Cellular and molecular aspects of Lyme arthritis. Cell. Mol. Life Sci. 57, 1562–1569 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Korganow, A.-S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Streilein, J. W., Dana, M. R. & Ksander, B. R. Immunity causing blindness: five different paths to herpes stromal deratitis. Immunol. Today 18, 443–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Panoutsakopoulou, V. & Cantor, H. On the relationship between viral infection and autoimmunity. J. Autoimmun. 16, 341–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kanangat, S., Thomas, J., Gangappa, S., Babu, J. S. & Rouse, B.T. Herpes simplex virus type I-mediated up-regulation of IL-12 (p40) mRNA expression. J. Immunol. 156, 1110–1116 (1996).

    CAS  PubMed  Google Scholar 

  35. Opremcak, E. M. et al. Immunogenetic influence of IgH-1 phenotype on experimental herpes simplex virus type-1 corneal infection. Invest. Opthalmol. Vis. Sci. 29, 749–754 (1988).

    CAS  Google Scholar 

  36. Dutt, J. E., Riblet, R. & Foster, C. S. The influence of Igh-C linked loci on murine herpes keratitis. Invest. Opthalmol. Vis. Sci. 34, 1347–1347 (1993).

    Google Scholar 

  37. Foster, C. S. et al. Clinical, pathologic and immunopathologic characteristics of experimental murine herpes simplex virus stromal keratitis and uveitis is controlled by gene products from the Igh-1 locus on chromosome 12. Trans. Am. Ophthalmol. Soc. 85, 293–311 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Opremcak, E. M., Rice, B. A., Wells, P. A. & Foster, C. S. Histology and immunohistology of Igh-1-restricted herpes simplex keratitis in BALB/c congenic mice. Invest. Opthalmol. Vis. Sci. 31, 305–312 (1990).

    CAS  Google Scholar 

  39. Avery, A. C. et al. Resistance to herpes stromal keratits conferred by an IgG2a-derived peptide. Nature 376, 431–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, Z.-S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Gangappa, S., Deshpande, S. P. & Rouse, B. T. Bystander activation of CD4+ T cells accounts for herpetic ocular lesions. Invest. Opthalmol. Vis. Sci. 41, 453–459 (2000).

    CAS  Google Scholar 

  42. Deshpande, S. P. et al. Herpes simplex virsu-induced keratitus: evaluation of the role of molecular mimicry in lesion pathogenesis. J. Virol. 75, 3077–3088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panoutsakopoulou, V. et al. Analysis of the relationship between viral infection and autoimmune disease. Immunity 15, 137–147 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Mathis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoist, C., Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nat Immunol 2, 797–801 (2001). https://doi.org/10.1038/ni0901-797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing