Immunological adjuvants promote activated T cell survival via induction of Bcl-3


Injection of soluble protein antigen into animals causes abortive proliferation of the responding T cells. Immunological adjuvants boost T cell responses at least in part by increasing the survival of activated T cells during and after the initial proliferative phase of their clonal expansion. To understand how adjuvants promote T cell survival, we used gene microarrays to analyze gene expression in T cells activated either with antigen alone or in the presence of two different adjuvants. Among the genes whose expression was increased by both adjuvants was the IκB family member Bcl-3. Retroviral infection experiments showed that expression of Bcl-3 increased survival of activated T cells in vitro and in vivo. Adjuvants may therefore improve survival of activated T cells via induction of Bcl-3.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: RNA transcripts of the genes encoding Bcl-3 and RelB are increased in T cells exposed to adjuvant.
Figure 2: Survival of activated T cells can be measured with Thy1.1+ retroviral vectors.
Figure 3: Bcl-3 increased survival of activated T cells.
Figure 4: Bcl-3 did not affect T cell proliferation.
Figure 5: Bcl-3 increased activated T cell survival in vivo.


  1. 1

    Kawabe, Y. & Ochi, A. Programmed cell death and extrathymic reduction of Vβ 8+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature 349, 245–248 (1991).

  2. 2

    Webb, S., Morris, C. & Sprent, J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63, 1249–1256 (1990).

  3. 3

    McCormack, J. E., Callahan, J. E., Kappler, J. & Marrack, P. C. Profound deletion of mature T cells in vivo by chronic exposure to exogenous superantigen. J Immunol. 150, 3785–3792 (1993).

  4. 4

    Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

  5. 5

    Mitchell, T., Kappler, J. & Marrack, P. Bystander virus infection prolongs activated T cell survival. J. Immunol. 162, 4527–4535 (1999).

  6. 6

    Vella, A. T., McCormack, J. E., Linsley, P. S., Kappler, J. W. & Marrack, P. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2, 261–270 (1995).

  7. 7

    Stywu, H. K., Liblau, R. S. & McDewitt, H. O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5, 17–30 (1996).

  8. 8

    Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

  9. 9

    Strasser, A., Harris, A. W., Huang. D. C., Kramer, P. H. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self- censorship. Cell 67, 889–899 (1991).

  10. 10

    Strasser, A., Harris, A. W., Huang, D. C., Krammer, P. H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

  11. 11

    Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

  12. 12

    Vella, A. T. et al. CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J. Immunol. 158, 4714–4720 (1997).

  13. 13

    Maxwell, J. R., Campbell, J. D., Kim, C. H. & Vella, A. T. CD40 activation boosts T cell immunity in vivo by enhancing T cell clonal expansion and delaying peripheral T cell deletion. J. Immunol. 162, 2024–2034 (1999).

  14. 14

    Teague, T. K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl Acad. Sci. USA 96, 12691–12696 (1999).

  15. 15

    Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910–6924 (1999).

  16. 16

    Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

  17. 17

    Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α–induced cell death. Science 274, 782–784 (1996).

  18. 18

    Williams, A. F. & Gagnon, J. Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 216, 696–703 (1982).

  19. 19

    Fenton, R. G., Marrack, P., Kappler, J. W., Kanagawa, O. & Seidman, J. G. Isotypic exclusion of γδ T cell receptors in transgenic mice bearing a rearranged β-chain gene. Science 241, 1089–1092 (1988).

  20. 20

    Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

  21. 21

    Grumont, R. J. et al. B lymphocytes differentially use the Rel and nuclear factor κB1 (NF-κB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 187, 663–674 (1998).

  22. 22

    Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Meth. 171, 131–137 (1994).

  23. 23

    Rebollo, A. et al. Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by AP1 and AP1-like transcription factors. Mol. Cell Biol. 20, 3407–3416 (2000).

  24. 24

    Aoki, Y. et al. Clonal expansion but lack of subsequent clonal deletion of bacterial superantigen-reactive T cells in murine retroviral infection. J. Immunol. 153, 3611–3621 (1994).

  25. 25

    Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763–774 (1998).

  26. 26

    Rocken, M., Urban, J. F. & Shevach, E. M. Infection breaks T-cell tolerance. Nature 359, 79–82 (1992).

  27. 27

    White, D. W., Roy, A. & Gilmore, T. D. The v-Rel oncoprotein blocks apoptosis and proteolysis of IκB-α in transformed chicken spleen cells. Oncogene 10, 857–868 (1995).

  28. 28

    Ohno, H., Takimoto, G. & McKeithan, T. W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60, 991–997 (1990).

  29. 29

    Kerr, L. D. et al. The proto-oncogene bcl-3 encodes an IκB protein. Genes Dev. 6, 2352–2363 (1992).

  30. 30

    Nolan, G. P. et al. The bcl-3 proto-oncogene encodes a nuclear Iκ B-like molecule that preferentially interacts with NF-κB p50 and p52 in a phosphorylation-dependent manner. Mol. Cell Biol. 13, 3557–3566 (1993).

  31. 31

    Bours, V. et al. The oncoprotein Bcl-3 directly transactivates through κ B motifs via association with DNA-binding p50B homodimers. Cell 72, 729–739 (1993).

  32. 32

    Schwarz, E. M., Krimpenfort, P., Berns, A. & Verma, I. M. Immunological defects in mice with a targeted disruption in Bcl-3. Genes Dev. 11, 187–197 (1997).

  33. 33

    Franzoso, G. et al. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions. Immunity 6, 479–490 (1997).

  34. 34

    Wulczyn, F. G., Naumann, M. & Scheidereit, C. Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-κB. Nature 358, 597–599 (1992).

  35. 35

    Chen, F. E. & Ghosh, G. Regulation of DNA binding by Rel/NF-κB transcription factors: structural views. Oncogene 18, 6845–6852 (1999).

  36. 36

    Heath, A. W., Wu, W. W. & Howard, M. C. Monoclonal antibodies to murine CD40 define two distinct functional epitopes. Eur. J. Immunol. 24, 1828–1834 (1994).

  37. 37

    Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J Immunol. 161, 3822–3826 (1998).

  38. 38

    Bhatia, K. et al. Mouse bcl-3: cDNA structure, mapping and stage-dependent expression in B lymphocytes. Oncogene 6, 1569–1573 (1991).

  39. 39

    Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

  40. 40

    Norris, P. S., Jepsen, K. & Haas, M. High-titer MSCV-based retrovirus generated in the pCL acute virus packaging system confers sustained gene expression in vivo. J Virol. Meth. 75, 161–167 (1998).

Download references


We thank B. Townend and S. Sobus for help with the cell sorting and flow cytometry and S. Madden and C. Slaughter for Affymetrix GeneChip analysis. Supported by USPHS grants AI-17134, AI-18785 and AI-22295.

Author information

Correspondence to Philippa Marrack.

Rights and permissions

Reprints and Permissions

About this article

Further reading