Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The microRNA cluster miR-1792 promotes TFH cell differentiation and represses subset-inappropriate gene expression

Abstract

Follicular helper T cells (TFH cells) are the prototypic helper T cell subset specialized to enable B cells to form germinal centers (GCs) and produce high-affinity antibodies. We found that expression of microRNAs (miRNAs) by T cells was essential for TFH cell differentiation. More specifically, we show that after immunization of mice with protein, the miRNA cluster miR-1792 was critical for robust differentiation and function of TFH cells in a cell-intrinsic manner that occurred regardless of changes in proliferation. In a viral infection model, miR-1792 restrained the expression of genes 'inappropriate' to the TFH cell subset, including the direct miR-1792 target Rora. Removal of one Rora allele partially 'rescued' the inappropriate gene signature in miR-1792-deficient TFH cells. Our results identify the miR-1792 cluster as a critical regulator of T cell–dependent antibody responses, TFH cell differentiation and the fidelity of the TFH cell gene-expression program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell–expressed miRNAs are essential for the differentiation of TFH cells and induction of GC B cells.
Figure 2: Regulation of TFH cells and GC responses by miR-1792.
Figure 3: Robust TFH cell differentiation requires miR-1792.
Figure 4: T cell–intrinsic overexpression of the miR-1792 cluster promotes TFH cell differentiation.
Figure 5: Fidelity of the TFH cell gene-expression program is enforced by miR-1792.
Figure 6: Rora is a functionally relevant target of miR-1792.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Vinuesa, C.G., Sanz, I. & Cook, M.C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    CAS  PubMed  Google Scholar 

  3. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  6. Baumjohann, D., Okada, T. & Ansel, K.M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    CAS  PubMed  Google Scholar 

  7. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202 (2010).

    CAS  PubMed  Google Scholar 

  9. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    CAS  PubMed  Google Scholar 

  10. Oestreich, K.J. & Weinmann, A.S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat. Rev. Immunol. 12, 799–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pepper, M., Pagan, A.J., Igyarto, B.Z., Taylor, J.J. & Jenkins, M.K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, J.P., Fuhrmann, F. & Hutloff, A. T-follicular helper cells survive as long-term memory cells. Eur. J. Immunol. 42, 1981–1988 (2012).

    CAS  PubMed  Google Scholar 

  14. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009).

    CAS  PubMed  Google Scholar 

  15. Takahashi, H. et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13, 587–595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bronevetsky, Y. et al. T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, S. et al. Molecular dissection of the miR-17–92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118, 5487–5497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Steiner, D.F. et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 35, 169–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston, R.J., Choi, Y.S., Diamond, J.A., Yang, J.A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Olive, V. et al. miR-19 is a key oncogenic component of mir-17–92. Genes Dev. 23, 2839–2849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebert, M.S. & Sharp, P.A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendell, J.T. & Olson, E.N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

    CAS  PubMed  Google Scholar 

  29. Muljo, S.A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, X. et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liston, A., Lu, L.F., O'Carroll, D., Tarakhovsky, A. & Rudensky, A.Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chong, M.M., Rasmussen, J.P., Rudensky, A.Y. & Littman, D.R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005–2017 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rolf, J. et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol. 185, 4042–4052 (2010).

    CAS  PubMed  Google Scholar 

  34. Buckler, J.L., Walsh, P.T., Porrett, P.M., Choi, Y. & Turka, L.A. Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J. Immunol. 177, 4262–4266 (2006).

    CAS  PubMed  Google Scholar 

  35. de Kouchkovsky, D. et al. miR-1792 regulates interleukin-10 production by Tregs and control of experimental autoimmune encephalomyelitis. J. Immunol. (in the press).

  36. Linterman, M.A. & Vinuesa, C.G. Signals that influence T follicular helper cell differentiation and function. Semin. Immunopathol. 32, 183–196 (2010).

    CAS  PubMed  Google Scholar 

  37. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  38. Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a Th17 cytokine. Immunol. Rev. 252, 116–132 (2013).

    PubMed  Google Scholar 

  39. Basu, R., Hatton, R.D. & Weaver, C.T. The Th17 family: flexibility follows function. Immunol. Rev. 252, 89–103 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Wu, T. et al. Temporal expression of microRNA cluster miR-17–92 regulates effector and memory CD8+ T-cell differentiation. Proc. Natl. Acad. Sci. USA 109, 9965–9970 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. O'Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, C.S., Deenick, E.K., Batten, M. & Tangye, S.G. The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209, 1241–1253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  45. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  PubMed  Google Scholar 

  46. Jeker, L.T. et al. MicroRNA 10a marks regulatory T cells. PLoS ONE 7, e36684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirota, K. et al. Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    CAS  PubMed  Google Scholar 

  49. Rao, P.K. et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105, 585–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  51. Baumjohann, D. & Ansel, K.M. Identification of T follicular helper (Tfh) cells by flow cytometry. Nat. Protoc. doi.org/10.1038/protex.2013.060 (18 June 2013).

  52. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Panduro for technical assistance; R. Blelloch (University of California, San Francisco) for Dgcr8fl/fl mice; R. Barbeau, J. Pollack, A. Barczak and D. Erle for assistance with microarray experiments; the 'miRNA in lymphocytes interest group' of the University of California, San Francisco, for discussions; D. Fuentes for animal husbandry; and D. Le for help with genotyping. Supported by the Burroughs Wellcome Fund (CABS 1006173 to K.M.A.), the US National Institutes of Health (R01 HL109102 and P01 HL107202 to K.M.A.; P01 AI35297 and U19 AI056388 to J.A.B.; and P30 DK63720 for core support), Juvenile Diabetes Research Foundation (J.A.B.), the Swiss National Science Foundation (PBBEP3-133516 to D.B.), the Swiss Foundation for Grants in Biology and Medicine (PASMP3-142725 to D.B.; and PASMP3-124274/1 to L.T.J.), the National Science Foundation (J.M.C.) and the Wellcome Trust (O.B.).

Author information

Authors and Affiliations

Authors

Contributions

D.B. did and analyzed most of the experiments; R.K., J.M.C., M.M.M., S.P., D.d.K., O.B., M.M. and L.T.J. did and analyzed some of the experiments; J.A.B. interpreted the data; D.B., K.M.A. and L.T.J. designed the experiments, interpreted the data, and wrote the manuscript; and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to K Mark Ansel or Lukas T Jeker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 5973 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumjohann, D., Kageyama, R., Clingan, J. et al. The microRNA cluster miR-1792 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol 14, 840–848 (2013). https://doi.org/10.1038/ni.2642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing