Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of transcription factors in shaping regulatory T cell identity

Abstract

Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix–loop–helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessory transcription factors in regulatory T cell specification and maturation.
Fig. 2: The coordinated network of accessory and lineage-specifying transcription factors regulating FOXP3 expression.

Similar content being viewed by others

References

  1. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).

    CAS  PubMed  Google Scholar 

  2. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  3. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  4. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  5. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  6. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  7. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    CAS  PubMed  Google Scholar 

  8. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    CAS  PubMed  Google Scholar 

  9. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    CAS  PubMed  Google Scholar 

  10. Birzele, F. et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in human. Nucleic Acids Res. 39, 7946–7960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007). Together with Birzele et al. (2011), this work shows that FOXP3-bound genes represent only a small fraction of the hallmark Treg cell genes that are directly regulated by FOXP3.

    CAS  PubMed  Google Scholar 

  12. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Hirahara, K. et al. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology 134, 235–245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, D., Sahoo, S. S., Chauss, D., Kazemian, M. & Afzali, B. Non-coding RNAs in immunoregulation and autoimmunity: technological advances and critical limitations. J. Autoimmun. 134, 102982 (2023).

    CAS  PubMed  Google Scholar 

  16. Sharabi, A. et al. Regulatory T cells in the treatment of disease. Nat. Rev. Drug Discov. 17, 823–844 (2018).

    CAS  PubMed  Google Scholar 

  17. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  PubMed  Google Scholar 

  18. Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 37, 2378–2389 (2007).

    CAS  PubMed  Google Scholar 

  20. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    PubMed  PubMed Central  Google Scholar 

  21. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Toker, A. et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 190, 3180–3188 (2013).

    CAS  PubMed  Google Scholar 

  24. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide–MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    CAS  PubMed  Google Scholar 

  27. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  28. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  30. Camperio, C. et al. Forkhead transcription factor FOXP3 upregulates CD25 expression through cooperation with RelA/NF-κB. PLoS ONE 7, e48303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    CAS  PubMed  Google Scholar 

  32. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takimoto, T. et al. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and TH1 development. J. Immunol. 185, 842–855 (2010).

    CAS  PubMed  Google Scholar 

  34. Wong, W. F. et al. Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells. J. Immunol. 188, 5408–5420 (2012).

    CAS  PubMed  Google Scholar 

  35. Helms, C. et al. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat. Genet. 35, 349–356 (2003).

    CAS  PubMed  Google Scholar 

  36. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011). This publication shows that BLIMP1 and IRF4 cooperate to define a subset of specialized IL-10-producing Treg cells within the mucosal tissues.

    CAS  PubMed  Google Scholar 

  37. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015). This study provides evidence that IL-33 drives the expression of IRF4 and BATF, which are essential for functional maintenance of visceral adipose tissue Treg cells.

    CAS  PubMed  Google Scholar 

  38. Bhairavabhotla, R. et al. Transcriptome profiling of human FoxP3+ regulatory T cells. Hum. Immunol. 77, 201–213 (2016).

    CAS  PubMed  Google Scholar 

  39. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, L., Barbi, J. & Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 17, 703–717 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40, 519–561 (2000).

    CAS  PubMed  Google Scholar 

  42. Lamas, B., Natividad, J. M. & Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 11, 1024–1038 (2018).

    CAS  PubMed  Google Scholar 

  43. Zhou, L. AHR function in lymphocytes: emerging concepts. Trends Immunol. 37, 17–31 (2016).

    PubMed  Google Scholar 

  44. Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003).

    CAS  PubMed  Google Scholar 

  45. Wang, X. et al. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR–SP1 interaction functioning as a genetic marker for vitiligo. Sci. Rep. 5, 13542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kerkvliet, N. I., Shepherd, D. M. & Baecher-Steppan, L. T lymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic T lymphocyte response by TCDD. Toxicol. Appl. Pharmacol. 185, 146–152 (2002).

    CAS  PubMed  Google Scholar 

  47. Funatake, C. J., Marshall, N. B., Steppan, L. B., Mourich, D. V. & Kerkvliet, N. I. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+CD25+ cells with characteristics of regulatory T cells. J. Immunol. 175, 4184–4188 (2005).

    CAS  PubMed  Google Scholar 

  48. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  49. Zhang, L. et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor. Invest. Ophthalmol. Vis. Sci. 51, 2109–2117 (2010).

    PubMed  Google Scholar 

  50. Fernandez-Salguero, P. et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268, 722–726 (1995).

    CAS  PubMed  Google Scholar 

  51. Elizondo, G., Rodriguez-Sosa, M., Estrada-Muniz, E., Gonzalez, F. J. & Vega, L. Deletion of the aryl hydrocarbon receptor enhances the inflammatory response to Leishmania major infection. Int. J. Biol. Sci. 7, 1220–1229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wincent, E. et al. The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. J. Biol. Chem. 284, 2690–2696 (2009).

    CAS  PubMed  Google Scholar 

  53. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  54. Nukaya, M. & Bradfield, C. A. Conserved genomic structure of the Cyp1a1 and Cyp1a2 loci and their dioxin responsive elements cluster. Biochem. Pharmacol. 77, 654–659 (2009).

    CAS  PubMed  Google Scholar 

  55. Gutierrez-Vazquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiong, L. et al. Ahr–Foxp3–RORγt axis controls gut homing of CD4+ T cells by regulating GPR15. Sci. Immunol. 5, eaaz7277 (2020). This key publication shows that interactions between AHR, FOXP3 and RORγt finely regulate the expression of GPR15 at the epigenetic level to orchestrate Treg cell gut homing.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Maruyama, T., Konkel, J. E., Zamarron, B. F. & Chen, W. The molecular mechanisms of Foxp3 gene regulation. Semin. Immunol. 23, 418–423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Okamura, T. et al. CD4+CD25LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc. Natl Acad. Sci. USA 106, 13974–13979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  64. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Oyake, T. et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell Biol. 16, 6083–6095 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Richer, M. J., Lang, M. L. & Butler, N. S. T cell fates zipped up: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function. J. Immunol. 197, 1009–1015 (2016).

    CAS  PubMed  Google Scholar 

  68. Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498, 506–510 (2013). This paper shows a key role for BACH2 expression within Treg cells and its role in the prevention of autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuwahara, M. et al. Bach2–Batf interactions control TH2-type immune response by regulating the IL-4 amplification loop. Nat. Commun. 7, 12596 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Imianowski, C. J. et al. BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis. J. Exp. Med. 219, e20211476 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat. Immunol. 22, 370–380 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sidwell, T. et al. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat. Commun. 11, 252 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rincon, M. & Flavell, R. A. AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes. EMBO J. 13, 4370–4381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grant, F. M. et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J. Exp. Med. 217, e20190711 (2020). Together with Sidwell et al. (2020), this paper provides evidence that BACH2 prevents premature differentiation of effector Treg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, E. H. et al. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J. Immunol. 192, 985–995 (2014).

    CAS  PubMed  Google Scholar 

  78. Do, J. S. et al. Foxp3 expression in induced T regulatory cells derived from human umbilical cord blood vs. adult peripheral blood. Bone Marrow Transpl. 53, 1568–1577 (2018).

    CAS  Google Scholar 

  79. Contreras, A. et al. BACH2 in Tregs limits the number of adipose tissue regulatory T cells and restrains type 2 immunity to fungal allergens. J. Immunol. Res. 2022, 6789055 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Povoleri, G. A. M. et al. Human retinoic acid-regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nat. Immunol. 19, 1403–1414 (2018). This paper identifies CD161+ Treg cells as a highly suppressive subset of Treg cells that produce IL-17 and possess wound healing properties in the gut.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pesenacker, A. M. et al. CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 121, 2647–2658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rutgeerts, P., Vermeire, S. & Van Assche, G. Mucosal healing in inflammatory bowel disease: impossible ideal or therapeutic target? Gut 56, 453–455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chauss, D. et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat. Immunol. 23, 62–74 (2022).

    CAS  PubMed  Google Scholar 

  84. McAllister, K. et al. Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 65, 3058–3062 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Google Scholar 

  87. Cooper, J. D. et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 40, 1399–1401 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferreira, M. A. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mouri, K. et al. Prioritization of autoimmune disease-associated genetic variants that perturb regulatory element activity in T cells. Nat. Genet. 54, 603–612 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoshino, H. et al. Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. J. Biol. Chem. 275, 15370–15376 (2000).

    CAS  PubMed  Google Scholar 

  91. Ando, R. et al. The transcription factor Bach2 is phosphorylated at multiple sites in murine B cells but a single site prevents its nuclear localization. J. Biol. Chem. 291, 1826–1840 (2016).

    CAS  PubMed  Google Scholar 

  92. Yu, X. et al. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat. Commun. 9, 3157 (2018). This work identifies SENP3 as a key molecule regulating the function and stability of Treg cells by controlling the nuclear localization of BACH2.

    PubMed  PubMed Central  Google Scholar 

  93. Hay, R. T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    CAS  PubMed  Google Scholar 

  94. Huang, C. et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 28, 2748–2762 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, H. R. et al. Reactive oxygen species prevent imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. PLoS ONE 9, e91146 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Gelderman, K. A., Hultqvist, M., Holmberg, J., Olofsson, P. & Holmdahl, R. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc. Natl Acad. Sci. USA 103, 12831–12836 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Santo, J. P. Immunology. A guardian of T cell fate. Science 329, 44–45 (2010).

    PubMed  Google Scholar 

  98. Albu, D. I. et al. BCL11B is required for positive selection and survival of double-positive thymocytes. J. Exp. Med. 204, 3003–3015 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Califano, D. et al. Diverting T helper cell trafficking through increased plasticity attenuates autoimmune encephalomyelitis. J. Clin. Invest. 124, 174–187 (2014).

    CAS  PubMed  Google Scholar 

  100. Califano, D. et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43, 354–368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cismasiu, V. B. et al. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24, 6753–6764 (2005).

    CAS  PubMed  Google Scholar 

  102. Cismasiu, V. B. et al. BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood 108, 2695–2702 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vanvalkenburgh, J. et al. Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J. Exp. Med. 208, 2069–2208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasan, S. N. et al. Bcl11b prevents catastrophic autoimmunity by controlling multiple aspects of a regulatory T cell gene expression program. Sci. Adv. 5, eaaw0706 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Drashansky, T. T. et al. Bcl11b prevents fatal autoimmunity by promoting T(reg) cell program and constraining innate lineages in T(reg) cells. Sci. Adv. 5, eaaw0480 (2019). Together with Hasan et al. (2019), this paper identifies a critical role for BCL-11B in enhancing FOXP3 expression and Treg cell-associated genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    CAS  PubMed  Google Scholar 

  107. Kim, H. J. et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350, 334–339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chougnet, C. & Hildeman, D. Helios — controller of Treg stability and function. Transl. Cancer Res. 5, S338–S341 (2016).

    PubMed  Google Scholar 

  109. Rieder, S. A. et al. Eos is redundant for regulatory T cell function but plays an important role in IL-2 and TH17 production by CD4+ conventional T cells. J. Immunol. 195, 553–563 (2015).

    CAS  PubMed  Google Scholar 

  110. Pan, F. et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Raffin, C. et al. Human memory HeliosFOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1β by downregulating their suppressor functions. J. Immunol. 191, 4619–4627 (2013).

    CAS  PubMed  Google Scholar 

  112. Gokhale, A. S., Gangaplara, A., Lopez-Occasio, M., Thornton, A. M. & Shevach, E. M. Selective deletion of Eos (Ikzf4) in T-regulatory cells leads to loss of suppressive function and development of systemic autoimmunity. J. Autoimmun. 105, 102300 (2019).

    CAS  PubMed  Google Scholar 

  113. Heller, J. J. et al. Restriction of IL-22-producing T cell responses and differential regulation of regulatory T cell compartments by zinc finger transcription factor Ikaros. J. Immunol. 193, 3934–3946 (2014).

    CAS  PubMed  Google Scholar 

  114. Lyon de Ana, C., Arakcheeva, K., Agnihotri, P., Derosia, N. & Winandy, S. Lack of Ikaros deregulates inflammatory gene programs in T cells. J. Immunol. 202, 1112–1123 (2019). This study shows that conditional deletion of Ikaros in CD4+ T cells impairs Treg cell differentiation and promotes TH17 cell-mediated autoimmunity.

    CAS  PubMed  Google Scholar 

  115. Graves, D. T. & Milovanova, T. N. Mucosal immunity and the FOXO1 transcription factors. Front. Immunol. 10, 2530 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Agnihotri, P., Robertson, N. M., Umetsu, S. E., Arakcheeva, K. & Winandy, S. Lack of Ikaros cripples expression of Foxo1 and its targets in naive T cells. Immunology 152, 494–506 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010).

    CAS  PubMed  Google Scholar 

  118. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    CAS  PubMed  Google Scholar 

  119. Lucca, L. E. et al. TIGIT signaling restores suppressor function of TH1 Tregs. JCI Insight 4, e124427 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    CAS  PubMed  Google Scholar 

  121. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    CAS  PubMed  Google Scholar 

  122. Yap, W. H., Yeoh, E., Tay, A., Brenner, S. & Venkatesh, B. STAT4 is a target of the hematopoietic zinc-finger transcription factor Ikaros in T cells. FEBS Lett. 579, 4470–4478 (2005).

    CAS  PubMed  Google Scholar 

  123. Qu, S. et al. Common variants near IKZF1 are associated with primary Sjogren’s syndrome in Han Chinese. PLoS ONE 12, e0177320 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Hoshino, A. et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J. Allergy Clin. Immunol. 140, 223–231 (2017).

    CAS  PubMed  Google Scholar 

  125. Hoshino, A. et al. Gain-of-function IKZF1 variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation. Sci. Immunol. 7, eabi7160 (2022).

    CAS  PubMed  Google Scholar 

  126. Toubai, T. et al. Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncoimmunology 4, e1016699 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

    CAS  PubMed  Google Scholar 

  128. Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1278–1288 (2006).

    CAS  PubMed  Google Scholar 

  129. Alvarez, J. D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dickinson, L. A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645 (1992).

    CAS  PubMed  Google Scholar 

  131. Kitagawa, Y. et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173–183 (2017). This study indicates that SATB1 is a Treg cell-specific super enhancer crucial for Treg cell fate decision in thymocytes before FOXP3 expression.

    CAS  PubMed  Google Scholar 

  132. Beyer, M. et al. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat. Immunol. 12, 898–907 (2011). This paper shows that SATB1-mediated modulation of global chromatin remodelling is repressed by FOXP3-dependent mechanisms in mature Treg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kondo, M. et al. SATB1 plays a critical role in establishment of immune tolerance. J. Immunol. 196, 563–572 (2016).

    CAS  PubMed  Google Scholar 

  134. Yasuda, K. et al. Satb1 regulates the effector program of encephalitogenic tissue TH17 cells in chronic inflammation. Nat. Commun. 10, 549 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. International Multiple Sclerosis Genetics Consortium et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Google Scholar 

  136. Akimova, T. et al. Human lung tumor FOXP3+ Tregs upregulate four “Treg-locking” transcription factors. JCI Insight 2, e94075 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Li, X. F. et al. Inhibition of SATB1 expression in regulatory T cells contributes to hepatitis B virus-related chronic liver inflammation. Mol. Med. Rep. 11, 231–236 (2015).

    CAS  PubMed  Google Scholar 

  138. Wang, Y. et al. Overexpression of SATB1 gene inhibits the immunosuppressive function of regulatory T cells in chronic hepatitis B. Ann. Clin. Lab. Sci. 47, 403–408 (2017).

    CAS  PubMed  Google Scholar 

  139. Zhao, G. N., Jiang, D. S. & Li, H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim. Biophys. Acta 1852, 365–378 (2015).

    CAS  PubMed  Google Scholar 

  140. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    CAS  PubMed  Google Scholar 

  141. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    CAS  PubMed  Google Scholar 

  142. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    PubMed  Google Scholar 

  143. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    CAS  PubMed  Google Scholar 

  144. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    CAS  PubMed  Google Scholar 

  145. Honma, K. et al. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl Acad. Sci. USA 102, 16001–16006 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Marecki, S., Atchison, M. L. & Fenton, M. J. Differential expression and distinct functions of IFN regulatory factor 4 and IFN consensus sequence binding protein in macrophages. J. Immunol. 163, 2713–2722 (1999).

    CAS  PubMed  Google Scholar 

  147. Williams, J. W. et al. Transcription factor IRF4 drives dendritic cells to promote TH2 differentiation. Nat. Commun. 4, 2990 (2013).

    PubMed  Google Scholar 

  148. Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Haljasorg, U. et al. Irf4 expression in thymic epithelium is critical for thymic regulatory T cell homeostasis. J. Immunol. 198, 1952–1960 (2017).

    CAS  PubMed  Google Scholar 

  150. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009). This paper shows that FOXP3 induces the expression of IRF4 in Treg cells and confers the ability to suppress TH2 cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bravo Garcia-Morato, M. et al. New human combined immunodeficiency caused by interferon regulatory factor 4 (IRF4) deficiency inherited by uniparental isodisomy. J. Allergy Clin. Immunol. 141, 1924–1927.e18 (2018).

    PubMed  Google Scholar 

  153. Alvisi, G. et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J. Clin. Invest. 130, 3137–3150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Biswas, P. S., Bhagat, G. & Pernis, A. B. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol. Rev. 233, 79–96 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ahyi, A. N., Chang, H. C., Dent, A. L., Nutt, S. L. & Kaplan, M. H. IFN regulatory factor 4 regulates the expression of a subset of TH2 cytokines. J. Immunol. 183, 1598–1606 (2009).

    CAS  PubMed  Google Scholar 

  156. Keller, A. D. & Maniatis, T. Identification and characterization of a novel repressor of β-interferon gene expression. Genes Dev. 5, 868–879 (1991).

    CAS  PubMed  Google Scholar 

  157. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    CAS  PubMed  Google Scholar 

  158. Turner, C. A. Jr., Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  159. Bankoti, R. et al. Differential regulation of effector and regulatory T cell function by Blimp1. Sci. Rep. 7, 12078 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    CAS  PubMed  Google Scholar 

  161. Imielinski, M. et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 41, 1335–1340 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    CAS  PubMed  Google Scholar 

  164. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Martins, G. A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    CAS  PubMed  Google Scholar 

  166. Garg, G. et al. Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep. 26, 1854–1868 e1855 (2019). This study shows that BLIMP1 restrains methylation of CNS2 in the Foxp3 locus to preserve Treg cell stability in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ogawa, C. et al. Blimp-1 functions as a molecular switch to prevent inflammatory activity in Foxp3+RORγt+ regulatory T cells. Cell Rep. 25, 19–28 e15 (2018). This paper shows that BLIMP1 binds to the IL17 locus and represses production of IL-17 in RORγt+FOXP3+ Treg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233.e17 (2018).

    CAS  PubMed  Google Scholar 

  169. Beppu, L. Y. et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight 6, e140644 (2021).

    PubMed  PubMed Central  Google Scholar 

  170. Lin, M. H. et al. T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in nonobese diabetic mice by increasing TH1 and TH17 cells. Clin. Immunol. 151, 101–113 (2014).

    CAS  PubMed  Google Scholar 

  171. Lin, M. H. et al. B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing TH1 and TH17 cells. Diabetologia 56, 136–146 (2013).

    CAS  PubMed  Google Scholar 

  172. Hu, M. et al. Infiltrating Foxp3+ regulatory T cells from spontaneously tolerant kidney allografts demonstrate donor-specific tolerance. Am. J. Transpl. 13, 2819–2830 (2013).

    CAS  Google Scholar 

  173. Norton, S. E. et al. High-dimensional mass cytometric analysis reveals an increase in effector regulatory T cells as a distinguishing feature of colorectal tumors. J. Immunol. 202, 1871–1884 (2019).

    CAS  PubMed  Google Scholar 

  174. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Murphy, T. L., Tussiwand, R. & Murphy, K. M. Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nat. Rev. Immunol. 13, 499–509 (2013).

    CAS  PubMed  Google Scholar 

  176. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Delacher, M. et al. Precursors for nonlymphoid-tissue Treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52, 295–312.e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Delacher, M. et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e17 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, C. et al. BATF is required for normal expression of gut-homing receptors by T helper cells in response to retinoic acid. J. Exp. Med. 210, 475–489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Xu, C. et al. BATF regulates T regulatory cell functional specification and fitness of triglyceride metabolism in restraining allergic responses. J. Immunol. 206, 2088–2100 (2021).

    CAS  PubMed  Google Scholar 

  181. Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283.e9 (2017).

    CAS  PubMed  Google Scholar 

  182. Itahashi, K. et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors. Sci. Immunol. 7, eabk0957 (2022). Together with Xu et al. (2021), this work shows that BATF regulates a key gene signature in Treg cells and specific ablation of Batf results in an inflammatory disorder characterized by TH2-type dominant responses.

    CAS  PubMed  Google Scholar 

  183. Cowell, I. G. E4BP4/NFIL3, a PAR-related bZIP factor with many roles. Bioessays 24, 1023–1029 (2002).

    CAS  PubMed  Google Scholar 

  184. Cowell, I. G. & Hurst, H. C. Transcriptional repression by the human bZIP factor E4BP4: definition of a minimal repression domain. Nucleic Acids Res. 22, 59–65 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang, W. et al. Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol. Cell Biol. 15, 6055–6063 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kashiwada, M. et al. IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc. Natl Acad. Sci. USA 107, 821–826 (2010).

    CAS  PubMed  Google Scholar 

  187. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    CAS  PubMed  Google Scholar 

  188. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117, 6193–6197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kobayashi, T. et al. NFIL3-deficient mice develop microbiota-dependent, IL-12/23-driven spontaneous colitis. J. Immunol. 192, 1918–1927 (2014).

    CAS  PubMed  Google Scholar 

  191. Kashiwada, M., Cassel, S. L., Colgan, J. D. & Rothman, P. B. NFIL3/E4BP4 controls type 2 T helper cell cytokine expression. EMBO J. 30, 2071–2082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Layland, L. E. et al. Pronounced phenotype in activated regulatory T cells during a chronic helminth infection. J. Immunol. 184, 713–724 (2010).

    CAS  PubMed  Google Scholar 

  193. Kim, H. S., Sohn, H., Jang, S. W. & Lee, G. R. The transcription factor NFIL3 controls regulatory T-cell function and stability. Exp. Mol. Med. 51, 80 (2019). This study shows that NFIL3 directly binds to and negatively regulates the expression of FOXP3, in a mechanism that induces methylation at the FOXP3 locus CpG sites.

    PubMed  PubMed Central  Google Scholar 

  194. Motomura, Y. et al. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat. Immunol. 12, 450–459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Bagadia, P., Huang, X., Liu, T. T. & Murphy, K. M. Shared transcriptional control of innate lymphoid cell and dendritic cell development. Annu. Rev. Cell Dev. Biol. 35, 381–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Frias, A. B. Jr. et al. The transcriptional regulator Id2 is critical for adipose-resident regulatory T cell differentiation, survival, and function. J. Immunol. 203, 658–664 (2019).

    CAS  PubMed  Google Scholar 

  197. Miyazaki, M. et al. Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease. Nat. Immunol. 15, 767–776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Masson, F. et al. Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood 123, 3420–3428 (2014).

    CAS  PubMed  Google Scholar 

  199. Hwang, S. M. et al. Inflammation-induced Id2 promotes plasticity in regulatory T cells. Nat. Commun. 9, 4736 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Schlenner, S. et al. NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Ann. Rheum. Dis. 78, 342–349 (2019).

    CAS  PubMed  Google Scholar 

  202. Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013).

    CAS  PubMed  Google Scholar 

  203. Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    CAS  PubMed  Google Scholar 

  204. Deknuydt, F., Bioley, G., Valmori, D. & Ayyoub, M. IL-1β and IL-2 convert human Treg into TH17 cells. Clin. Immunol. 131, 298–307 (2009).

    CAS  PubMed  Google Scholar 

  205. Beriou, G. et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009). This paper demonstrates that IL-17-producing FOXP3+ Treg cells induced by pro-inflammatory cytokines maintain suppressive function and express CCR6.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    CAS  PubMed  Google Scholar 

  207. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become TH17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    CAS  PubMed  Google Scholar 

  208. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009). This publication indicates that Treg cells lose expression of FOXP3 in inflamed microenvironments and acquire an effector-memory phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Noval Rivas, M. et al. Regulatory T cell reprogramming toward a TH2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    CAS  PubMed  Google Scholar 

  211. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Hori, S. Regulatory T cell plasticity: beyond the controversies. Trends Immunol. 32, 295–300 (2011).

    CAS  PubMed  Google Scholar 

  213. Hori, S. Developmental plasticity of Foxp3+ regulatory T cells. Curr. Opin. Immunol. 22, 575–582 (2010).

    CAS  PubMed  Google Scholar 

  214. Hori, S. Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells. Immunol. Rev. 259, 159–172 (2014).

    CAS  PubMed  Google Scholar 

  215. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  216. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  217. Lazarevic, V. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011).

    CAS  PubMed  Google Scholar 

  218. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    CAS  PubMed  Google Scholar 

  219. Amarnath, S. et al. Tbet is a critical modulator of FoxP3 expression in autoimmune graft-versus-host disease. Haematologica 102, 1446–1456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017). This report shows that T-bet expression is essential for maintaining Treg cell suppressive function for controlling TH1 cell and CD8+ T cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011). This paper identifies IFNγ+T-bet+ Treg cells in patients with multiple sclerosis and suggests that they may have reduced in vitro suppressive function.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, Z. et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+CD25 T cells to CD4+ Tregs. J. Clin. Invest. 116, 2434–2441 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Di Giovangiulio, M. et al. Tbet expression in regulatory T cells is required to initiate TH1-mediated colitis. Front. Immunol. 10, 2158 (2019).

    PubMed  PubMed Central  Google Scholar 

  224. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  PubMed  Google Scholar 

  225. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009). This report shows that T-bet expression is essential for Treg cells to access sites of TH1-type inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Tan, T. G., Mathis, D. & Benoist, C. Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc. Natl Acad. Sci. USA 113, 14103–14108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Warunek, J. et al. Tbet expression by regulatory T cells is needed to protect against TH1-mediated immunopathology during toxoplasma infection in mice. Immunohorizons 5, 931–943 (2021).

    CAS  PubMed  Google Scholar 

  228. Kachler, K., Holzinger, C., Trufa, D. I., Sirbu, H. & Finotto, S. The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma. Oncoimmunology 7, e1456612 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  PubMed  Google Scholar 

  230. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  PubMed  Google Scholar 

  231. Ho, I. C. et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor α gene. EMBO J. 10, 1187–1192 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chapoval, S., Dasgupta, P., Dorsey, N. J. & Keegan, A. D. Regulation of the T helper cell type 2 (TH2)/T regulatory cell (Treg) balance by IL-4 and STAT6. J. Leukoc. Biol. 87, 1011–1018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Wohlfert, E. A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wang, Y., Su, M. A. & Wan, Y. Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337–348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Siede, J. et al. IL-33 receptor-expressing regulatory T cells are highly activated, TH2 biased and suppress CD4 T cell proliferation through IL-10 and TGFβ release. PLoS ONE 11, e0161507 (2016).

    PubMed  PubMed Central  Google Scholar 

  236. Hayakawa, M. et al. T-helper type 2 cell-specific expression of the ST2 gene is regulated by transcription factor GATA-3. Biochim. Biophys. Acta 1728, 53–64 (2005).

    CAS  PubMed  Google Scholar 

  237. Sawant, D. V. et al. Bcl6 controls the TH2 inflammatory activity of regulatory T cells by repressing Gata3 function. J. Immunol. 189, 4759–4769 (2012).

    CAS  PubMed  Google Scholar 

  238. Sakai, R. et al. Kidney GATA3+ regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol. Immunol. 18, 1249–1261 (2021).

    CAS  PubMed  Google Scholar 

  239. Kalekar, L. A. et al. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci. Immunol. 4, eaaw2910 (2019). This paper shows that skin Treg cells express high levels of GATA3 and have a key role during dermal fibrosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    CAS  PubMed  Google Scholar 

  241. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97, 10132–10137 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Eberl, G. et al. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    CAS  PubMed  Google Scholar 

  243. Croft, C. A. et al. Notch, RORC and IL-23 signals cooperate to promote multi-lineage human innate lymphoid cell differentiation. Nat. Commun. 13, 4344 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  245. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+Foxp3+RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Bhaumik, S., Mickael, M. E., Moran, M., Spell, M. & Basu, R. RORγt promotes Foxp3 expression by antagonizing the effector program in colonic regulatory T cells. J. Immunol. 207, 2027–2038 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    CAS  PubMed  Google Scholar 

  250. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  252. Ohnmacht, C. et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    CAS  PubMed  Google Scholar 

  253. Yang, B. H. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    CAS  PubMed  Google Scholar 

  254. Zhou, L. et al. IL-6 programs TH17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  255. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022). Together with Sefik et al. (2015), this article shows that RORγt is preferentially expressed in colonic Treg cells and induced by the gut microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Afzali, B. et al. CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur. J. Immunol. 43, 2043–2054 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Ichiyama, K. et al. Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt. J. Biol. Chem. 283, 17003–17008 (2008).

    CAS  PubMed  Google Scholar 

  261. Neumann, C. et al. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019).

    CAS  PubMed  Google Scholar 

  262. Imbratta, C., Hussein, H., Andris, F. & Verdeil, G. c-MAF, a Swiss army knife for tolerance in lymphocytes. Front. Immunol. 11, 206 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Gabrysova, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nat. Immunol. 19, 497–507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Xu, J. et al. c-Maf regulates IL-10 expression during TH17 polarization. J. Immunol. 182, 6226–6236 (2009).

    CAS  PubMed  Google Scholar 

  265. Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and γ interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Fukuda, T. et al. Disruption of the Bcl6 gene results in an impaired germinal center formation. J. Exp. Med. 186, 439–448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and TH2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    CAS  PubMed  Google Scholar 

  269. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  270. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Koenig, A. et al. NFATc1/αA and Blimp-1 support the follicular and effector phenotype of Tregs. Front. Immunol. 12, 791100 (2021). This paper shows that BLIMP1 cooperates with NFATc1 to mediate CXCR5 transactivation for promoting the migration of TFR cells into B cell follicles.

    CAS  PubMed  Google Scholar 

  272. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Aloulou, M. et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat. Commun. 7, 10579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Kumar, S. et al. Developmental bifurcation of human T follicular regulatory cells. Sci. Immunol. 6, eabd8411 (2021).

    PubMed  Google Scholar 

  276. Fu, W. et al. Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215, 815–825 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Wen, Y. et al. Imbalance of circulating CD4+CXCR5+FOXP3+ TFR-like cells and CD4+CXCR5+FOXP3 TFH-like cells in myasthenia gravis. Neurosci. Lett. 630, 176–182 (2016).

    CAS  PubMed  Google Scholar 

  278. Fonseca, V. R. et al. Human blood TFR cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci. Immunol. 2, eaan1487 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by extramural research programmes of the US National Institutes of Health (NIH) (R35GM138283 to M.K.) and (in part) by the Intramural Research Programs of the National Institute of Diabetes and Digestive and Kidney Diseases (project number ZIA/DK075149 to B.A.). We also acknowledge support from the Purdue University Center for Cancer Research (P30CA023168). We thank V. Lazaveric (NIH) for constructive feedback on the first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Behdad Afzali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo-Ochoa, J.L., Kazemian, M. & Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 23, 842–856 (2023). https://doi.org/10.1038/s41577-023-00893-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00893-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing