Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2–DP1 receptor paracrine axis

Abstract

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell–deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS–ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3–L-PGDS–DP1 loop that drives mast cell maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PLA2G3 is expressed in mast cells and has the ability to induce degranulation.
Figure 2: Altered anaphylaxis in mice with deletion or overexpression of PLA2G3.
Figure 3: Immature properties of tissue mast cells in Pla2g3-deficient mice.
Figure 4: Defective fibroblast-driven maturation of Pla2g3−/− BMMCs.
Figure 5: Defective mast-cell maturation and anaphylaxis by DP1 deficiency.
Figure 6: Defective mast-cell maturation and anaphylaxis by L-PGDS deficiency.
Figure 7: The PLA2G3–L-PGDS–DP1 axis facilitates maturation of human mast cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Galli, S.J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gurish, M.F. & Austen, K.F. Developmental origin and functional specialization of mast cell subsets. Immunity 37, 25–33 (2012).

    CAS  PubMed  Google Scholar 

  3. Allakhverdi, Z., Smith, D.E., Comeau, M.R. & Delespesse, G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol. 179, 2051–2054 (2007).

    CAS  PubMed  Google Scholar 

  4. Matsuda, H. et al. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J. Exp. Med. 174, 7–14 (1991).

    CAS  PubMed  Google Scholar 

  5. Abonia, J.P. et al. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105, 4308–4313 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurish, M.F. et al. Intestinal mast cell progenitors require CD49dβ7 (α4β7 integrin) for tissue-specific homing. J. Exp. Med. 194, 1243–1252 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito, A. et al. SgIGSF: a new mast-cell adhesion molecule used for attachment to fibroblasts and transcriptionally regulated by MITF. Blood 101, 2601–2608 (2003).

    CAS  PubMed  Google Scholar 

  8. Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    CAS  PubMed  Google Scholar 

  9. Matsuoka, T. et al. Prostaglandin D2 as a mediator of allergic asthma. Science 287, 2013–2017 (2000).

    CAS  PubMed  Google Scholar 

  10. Kanaoka, Y., Maekawa, A., Penrose, J.F., Austen, K.F. & Lam, B.K. Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J. Biol. Chem. 276, 22608–22613 (2001).

    CAS  PubMed  Google Scholar 

  11. Trivedi, S.G. et al. Essential role for hematopoietic prostaglandin D2 synthase in the control of delayed type hypersensitivity. Proc. Natl. Acad. Sci. USA 103, 5179–5184 (2006).

    CAS  PubMed  Google Scholar 

  12. Hammad, H. et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J. Exp. Med. 204, 357–367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K. & Serhan, C.N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    CAS  PubMed  Google Scholar 

  14. Kunikata, T. et al. Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat. Immunol. 6, 524–531 (2005).

    CAS  PubMed  Google Scholar 

  15. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murakami, M. et al. Recent progress in phospholipase A2 research: From cells to animals to humans. Prog. Lipid Res. 50, 152–192 (2011).

    CAS  PubMed  Google Scholar 

  17. Uozumi, N. et al. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390, 618–622 (1997).

    CAS  PubMed  Google Scholar 

  18. Munoz, N.M. et al. Deletion of secretory group V phospholipase A2 attenuates cell migration and airway hyperresponsiveness in immunosensitized mice. J. Immunol. 179, 4800–4807 (2007).

    CAS  PubMed  Google Scholar 

  19. Henderson, W.R. Jr. et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J. Exp. Med. 204, 865–877 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bilo, B.M., Rueff, F., Mosbech, H., Bonifazi, F. & Oude-Elberink, J.N. Diagnosis of Hymenoptera venom allergy. Allergy 60, 1339–1349 (2005).

    CAS  PubMed  Google Scholar 

  21. Dudler, T. et al. A link between catalytic activity, IgE-independent mast cell activation, and allergenicity of bee venom phospholipase A2 . J. Immunol. 155, 2605–2613 (1995).

    CAS  PubMed  Google Scholar 

  22. Sato, H. et al. Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice. J. Clin. Invest. 120, 1400–1414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Murakami, M. et al. Cellular distribution, post-translational modification, and tumorigenic potential of human group III secreted phospholipase A2 . J. Biol. Chem. 280, 24987–24998 (2005).

    CAS  PubMed  Google Scholar 

  24. Murakami, M. et al. Cellular arachidonate-releasing function of novel classes of secretory phospholipase A2s (groups III and XII). J. Biol. Chem. 278, 10657–10667 (2003).

    CAS  PubMed  Google Scholar 

  25. Valentin, E., Ghomashchi, F., Gelb, M.H., Lazdunski, M. & Lambeau, G. Novel human secreted phospholipase A2 with homology to the group III bee venom enzyme. J. Biol. Chem. 275, 7492–7496 (2000).

    CAS  PubMed  Google Scholar 

  26. Sato, H. et al. Analyses of group III secreted phospholipase A2 transgenic mice reveal potential participation of this enzyme in plasma lipoprotein modification, macrophage foam cell formation, and atherosclerosis. J. Biol. Chem. 283, 33483–33497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Taketomi, Y. et al. Impaired mast cell maturation and degranulation and attenuated allergic responses in Ndrg1-deficient mice. J. Immunol. 178, 7042–7053 (2007).

    CAS  PubMed  Google Scholar 

  28. Kashem, S.W. et al. G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: roles of Mas-related genes MrgX1 and MrgX2. Eur. J. Pharmacol. 668, 299–304 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakatani, N. et al. Role of cytosolic phospholipase A2 in the production of lipid mediators and histamine release in mouse bone-marrow-derived mast cells. Biochem. J. 352, 311–317 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohri, I. et al. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci. 26, 4383–4393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Eguchi, N. et al. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc. Natl. Acad. Sci. USA 96, 726–730 (1999).

    CAS  PubMed  Google Scholar 

  32. Ohtsu, H. et al. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 502, 53–56 (2001).

    CAS  PubMed  Google Scholar 

  33. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    CAS  PubMed  Google Scholar 

  34. Humphries, D.E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    CAS  PubMed  Google Scholar 

  35. Nishimasu, H. et al. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat. Struct. Mol. Biol. 18, 205–212 (2011).

    CAS  PubMed  Google Scholar 

  36. Bagga, S. et al. Lysophosphatidic acid accelerates the development of human mast cells. Blood 104, 4080–4087 (2004).

    CAS  PubMed  Google Scholar 

  37. Iwashita, M. et al. Synthesis and evaluation of lysophosphatidylserine analogues as inducers of mast cell degranulation. Potent activities of lysophosphatidylthreonine and its 2-deoxy derivative. J. Med. Chem. 52, 5837–5863 (2009).

    CAS  PubMed  Google Scholar 

  38. Satoh, T. et al. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J. Immunol. 177, 2621–2629 (2006).

    CAS  PubMed  Google Scholar 

  39. Segi, E. et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem. Biophys. Res. Commun. 246, 7–12 (1998).

    CAS  PubMed  Google Scholar 

  40. Sugimoto, Y. et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science 277, 681–683 (1997).

    CAS  PubMed  Google Scholar 

  41. Kobayashi, T. et al. Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J. Clin. Invest. 114, 784–794 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iizuka, Y. et al. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J. 24, 4678–4690 (2010).

    CAS  PubMed  Google Scholar 

  43. Sun, D. & Funk, C.D. Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J. Biol. Chem. 271, 24055–24062 (1996).

    CAS  PubMed  Google Scholar 

  44. Ueno, N. et al. Analysis of two major intracellular phospholipases A2 (PLA2) in mast cells reveals crucial contribution of cytosolic PLA2α, not Ca2+-independent PLA2β, to lipid mobilization in proximal mast cells and distal fibroblasts. J. Biol. Chem. 286, 37249–37263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shore, P.A., Burkhalter, A. & Cohn, V.H. Jr. A method for the fluorometric assay of histamine in tissues. J. Pharmacol. Exp. Ther. 127, 182–186 (1959).

    CAS  PubMed  Google Scholar 

  46. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    CAS  Google Scholar 

  47. Siracusa, M.C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kajiwara, N. et al. Activation of human mast cells through the platelet-activating factor receptor. J. Allergy Clin. Immunol. 125, 1137–1145 (2010).

    CAS  PubMed  Google Scholar 

  49. Tanaka, S. et al. Expression of l-histidine decarboxylase in granules of elicited mouse polymorphonuclear leukocytes. Eur. J. Immunol. 34, 1472–1482 (2004).

    CAS  PubMed  Google Scholar 

  50. Gerena, R.L., Eguchi, N., Urade, Y. & Killian, G.J. Stage and region-specific localization of lipocalin-type prostaglandin D synthase in the adult murine testis and epididymis. J. Androl. 21, 848–854 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Tanoue, H. Ohkubo, K. Araki and K. Yamamura for generating Ptges2−/− mice. This work was supported by grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22116005 and 24390021 to M.M. and 23790119 and 24117724 to Y.T.), Promoting Individual Research to Nurture the Seeds of Future Innovation and Organizing Unique Innovative Network (PRESTO) of Japan Science and Technology Agency (to M.M.), and the Uehara, Mitsubishi, Terumo, Mochida and Toray Science Foundations (to M.M.).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. performed experiments and together with M.M. conceived and designed the study, interpreted the findings and wrote the manuscript; N.U., T.K., M.K., R.M. and H.S. performed experiments; S.T., M.S., Masanori Nakamura, Y.N., K.I., K.M., Satoshi Nakamizo, K.K., Y.O. and C.R. helped perform some experiments; K.Y., N.K., R.T., M.H.G. M.A., T.Y., Masataka Nakamura, K.W., H.H., Motonao Nakamura, K.A., Y.U., Y.S., T.S., Shu Narumiya and S.H. contributed to experimental designs.

Corresponding author

Correspondence to Makoto Murakami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 3982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taketomi, Y., Ueno, N., Kojima, T. et al. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2–DP1 receptor paracrine axis. Nat Immunol 14, 554–563 (2013). https://doi.org/10.1038/ni.2586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing