Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The protease activity of the paracaspase MALT1 is controlled by monoubiquitination

Abstract

The protease activity of the paracaspase MALT1 is central to lymphocyte activation and lymphomagenesis, but how this activity is controlled remains unknown. Here we identify a monoubiquitination of MALT1 on Lys644 that activated the protease function of MALT1. Monoubiquitinated MALT1 had enhanced protease activity, whereas a ubiquitination-deficient MALT1 mutant with replacement of that lysine with arginine (MALT1(K644R)) had less protease activity, which correlated with impaired induction of interleukin 2 (IL-2) via the T cell antigen receptor in activated T cells. Expression of MALT1(K644R) diminished the survival of cells derived from diffuse large B cell lymphoma of the activated B cell–like subtype (ABC DLBCL), which require constitutive protease activity of MALT1 for survival. Thus, monoubiquitination of MALT1 is essential for its catalytic activation and is therefore a potential target for the treatment of ABC-DLBCL and for immunomodulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MALT1 is monoubiquitinated after stimulation of T cells.
Figure 2: MALT1 is monoubiquitinated on Lys644 in HEK293T cells.
Figure 3: Monoubiquitination is required and sufficient for the protease activity of MALT1.
Figure 4: The protease activity of MALT1 depends on functional ubiquitin.
Figure 5: The C-terminal domain of MALT1 regulates its protease activity.
Figure 6: Monoubiquitination of MALT1 is important for NF-κB activation in T cells.
Figure 7: Monoubiquitination of MALT1 in ABC DLBCL.

Similar content being viewed by others

References

  1. Thome, M., Charton, J.E., Pelzer, C. & Hailfinger, S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2, a003004 (2010).

    Article  Google Scholar 

  2. Rosebeck, S., Lucas, P.C. & McAllister-Lucas, L.M. Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol. 7, 613–617 (2011).

    Article  CAS  Google Scholar 

  3. Staal, J., Bekaert, T. & Beyaert, R. Regulation of NF-κB signaling by caspases and MALT1 paracaspase. Cell Res. 21, 40–54 (2011).

    Article  CAS  Google Scholar 

  4. Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 26, 4634–4645 (2007).

    Article  CAS  Google Scholar 

  5. Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  Google Scholar 

  6. Wu, C.J. & Ashwell, J.D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA 105, 3023–3028 (2008).

    Article  CAS  Google Scholar 

  7. Häcker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  Google Scholar 

  8. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  9. Düwel, M. et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J. Immunol. 182, 7718–7728 (2009).

    Article  Google Scholar 

  10. Rebeaud, F. et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat. Immunol. 9, 272–281 (2008).

    Article  CAS  Google Scholar 

  11. Hailfinger, S. et al. Malt1-dependent RelB cleavage promotes canonical NF-κB activation in lymphocytes and lymphoma cell lines. Proc. Natl. Acad. Sci. USA 108, 14596–14601 (2011).

    Article  CAS  Google Scholar 

  12. Weih, F. et al. Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 157, 3974–3979 (1996).

    CAS  PubMed  Google Scholar 

  13. Marienfeld, R. et al. Signal-specific and phosphorylation-dependent RelB degradation: a potential mechanism of NF-κB control. Oncogene 20, 8142–8147 (2001).

    Article  CAS  Google Scholar 

  14. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9, 263–271 (2008).

    Article  CAS  Google Scholar 

  15. Staal, J. et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742–1752 (2011).

    Article  CAS  Google Scholar 

  16. Hailfinger, S. et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 106, 19946–19951 (2009).

    Article  CAS  Google Scholar 

  17. Ferch, U. et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 206, 2313–2320 (2009).

    Article  CAS  Google Scholar 

  18. Staudt, L.M. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2, a000109 (2010).

    Article  Google Scholar 

  19. Kingeter, L.M. & Schaefer, B.C. Malt1 and cIAP2-Malt1 as effectors of NF-κB activation: kissing cousins or distant relatives? Cell. Signal. 22, 9–22 (2010).

    Article  CAS  Google Scholar 

  20. Rosebeck, S. et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-κB activation. Science 331, 468–472 (2011).

    Article  CAS  Google Scholar 

  21. Hicke, L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  22. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  23. Wertz, I.E. & Dixit, V.M. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb. Perspect. Biol. 2, a003350 (2010).

    Article  Google Scholar 

  24. Iwai, K. & Tokunaga, F. Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep. 10, 706–713 (2009).

    Article  CAS  Google Scholar 

  25. Laussmann, M.A. et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ. 18, 1584–1597 (2011).

    Article  CAS  Google Scholar 

  26. Rehm, M. et al. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J. Biol. Chem. 277, 24506–24514 (2002).

    Article  CAS  Google Scholar 

  27. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    Article  CAS  Google Scholar 

  28. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–169 (2006).

    Article  CAS  Google Scholar 

  29. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  Google Scholar 

  30. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  31. Wiesmann, C. et al. Structural Determinants of MALT1 Protease Activity. J. Mol. Biol. 419, 4–21 (2012).

    Article  CAS  Google Scholar 

  32. Yu, J.W., Jeffrey, P.D., Ha, J.Y., Yang, X. & Shi, Y. Crystal structure of the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) paracaspase region. Proc. Natl. Acad. Sci. USA 108, 21004–21009 (2011).

    Article  CAS  Google Scholar 

  33. Weih, F., Lira, S.A. & Bravo, R. Overexpression of RelB in transgenic mice does not affect IκB alpha levels: differential regulation of RelA and RelB by the inhibitor protein. Oncogene 12, 445–449 (1996).

    CAS  PubMed  Google Scholar 

  34. Uren, A.G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  35. Boatright, K.M. & Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15, 725–731 (2003).

    Article  CAS  Google Scholar 

  36. Todi, S.V. et al. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372–382 (2009).

    Article  CAS  Google Scholar 

  37. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  Google Scholar 

  38. Neal, J.W. & Clipstone, N.A. Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3–L1 cells. J. Biol. Chem. 277, 49776–49781 (2002).

    Article  CAS  Google Scholar 

  39. Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Valitutti (Centre Hospitalier Universitaire Purpan) for monoclonal antibody OKT3; R. Iggo (University of Bordeaux) for lentiviral vector pRDI_292 containing the EF1 promoter; J.-E. Charton (University of Lausanne) for purified T cells; M. Jaworski (University of Lausanne) for the lentiviral NF-κB reporter construct; Z. Chen (University of Texas Southwestern Medical Center) for ubiquitin mutants; N. Clipstone (Loyola University) for the pMSCV-IRES-GFP vector; K. Maslowski for manuscript corrections; S. Hailfinger for support and advice; K. Hofmann and I. Dikic for advice; and F. Martinon for critical reading of the manuscript. Supported by the Swiss National Science Foundation, the Swiss Cancer League (Oncosuisse), Fondation Pierre Mercier Pour la Science, Fondation Emma Muschamp, a collaboration agreement with Ono Pharmaceutical, the Boehringer Ingelheim Foundation (K.C.), the German Research Foundation (G.L.) and the Deutsche Krebshilfe (G.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.P. designed and did experiments, analyzed data and wrote the manuscript; K.C. and A.W. contributed to the experiments in Figures 5 and 7d, respectively; M.G. provided technical assistance; G.L. designed and analyzed experiments in Figure 7d and M.T. designed and organized the study and wrote the paper.

Corresponding author

Correspondence to Margot Thome.

Ethics declarations

Competing interests

Part of the work by C.P., K.C., M.G. & M.T. was supported by a collaboration agreement with Ono Pharmaceutical.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 6965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelzer, C., Cabalzar, K., Wolf, A. et al. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat Immunol 14, 337–345 (2013). https://doi.org/10.1038/ni.2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing