Abstract

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1β (IL-1β) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1β. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1β responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB–dependent IL-1β responses differently in different cell types.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Gene Expression Omnibus

References

  1. 1.

    , , & Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

  2. 2.

    et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

  3. 3.

    et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

  4. 4.

    et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).

  5. 5.

    , , , & Inherited disorders of NF-κB-mediated immunity in man. Curr. Opin. Immunol. 16, 34–41 (2004).

  6. 6.

    et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

  7. 7.

    et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

  8. 8.

    , & Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

  9. 9.

    et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

  10. 10.

    et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

  11. 11.

    et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).

  12. 12.

    & Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med. 202, 197–201 (2005).

  13. 13.

    & Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).

  14. 14.

    , & Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24, 490–497 (2011).

  15. 15.

    et al. Septicemia without sepsis: inherited disorders of nuclear factor-κB-mediated inflammation. Clin. Infect. Dis. 41 (suppl. 7), S436–S439 (2005).

  16. 16.

    et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

  17. 17.

    & Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep. 10, 706–713 (2009).

  18. 18.

    , , & Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet. 14, R215–R223 (2005).

  19. 19.

    et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207, 2307–2312 (2010).

  20. 20.

    et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87, 873–881 (2010).

  21. 21.

    et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

  22. 22.

    et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

  23. 23.

    et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

  24. 24.

    et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

  25. 25.

    et al. Transcriptional activity of RBCK1 protein (RBCC protein interacting with PKC 1): requirement of RING-finger and B-Box motifs and regulation by protein kinases. Biochem. Biophys. Res. Commun. 247, 392–396 (1998).

  26. 26.

    et al. RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-κB activation by targeting TAB2/3 for degradation. J. Biol. Chem. 282, 16776–16782 (2007).

  27. 27.

    et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

  28. 28.

    , , & HOIL-1L interacting protein (HOIP) is essential for CD40 signaling. PLoS ONE 6, e23061 (2011).

  29. 29.

    et al. Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc. Natl. Acad. Sci. USA 108, 11536–11541 (2011).

  30. 30.

    , , , & Primary immunodeficiencies associated with pneumococcal disease. Curr. Opin. Allergy Clin. Immunol. 3, 451–459 (2003).

  31. 31.

    et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

  32. 32.

    , , & Absence of Peyer's patches and abnormal lymphoid architecture in chronic proliferative dermatitis (cpdm/cpdm) mice. J. Immunol. 162, 3890–3896 (1999).

  33. 33.

    et al. Increased expression of type 2 cytokines in chronic proliferative dermatitis (cpdm) mutant mice and resolution of inflammation following treatment with IL-12. Eur. J. Immunol. 31, 734–742 (2001).

  34. 34.

    , & Inhibition of NF-kappaB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol. 131, 141–149 (2011).

  35. 35.

    & The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr. Mol. Med. 2, 177–188 (2002).

  36. 36.

    et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 63, 1053–1058 (2004).

  37. 37.

    , , , & Polysaccharide (amylopectin-like) storage myopathy histochemical ultrastructural and biochemical studies. Acta Neuropathol. Suppl. 7, 292–296 (1981).

  38. 38.

    et al. [Glycogenosis type IV as a rare cause of cardiomyopathy—report of a successful heart transplantation.] Z. Kardiol. 88, 850–856 (1999).

  39. 39.

    , , , & Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS ONE 4, e5907 (2009).

  40. 40.

    et al. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease. Epilepsia 51, 1691–1698 (2010).

  41. 41.

    & Lafora disease: epidemiology, pathophysiology and management. CNS Drugs 24, 549–561 (2010).

  42. 42.

    & Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  43. 43.

    et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  44. 44.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  45. 45.

    et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466–472 (2000).

  46. 46.

    et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29, 150–164 (2008).

Download references

Acknowledgements

We thank the children and their families for participating, and F. Iserin, V. Colomb, F. Rüemmele and V. Valayannopoulos for taking care of them. We particularly thank L. Abel, A. Durandy, P. Génin, B. Neven, M. Veron, J.W. Verbsky and R. Weil. H. Walczak (Imperial College London), K. Iwai (Osaka University) and A. Smahi (INSERM U781 Necker hospital, Paris Cité Sorbonne University) provided antibodies and cells. This work was partly funded by US National Center for Advancing Translational Sciences and National Center for Research Resources, US National Institutes of Health (NIH; 8UL1TR000043), St. Giles Foundation, Jeffrey Modell Foundation, Rockefeller University, INSERM, Paris Descartes University, US National Institute of Allergy and Infectious Diseases (R21AI085523; J.-L.C. and D.C.), NIH (5P01AI061093; J.-L.C.), NIH (R01AR050770; V.P.), Canceropole Ile de France (2007; A.I.), European Community Network of Excellence-Role of Ubiquitin and Ubiquitin-like Modifiers in Cellular Regulation (LSHC-CT-2005-018683; E.L. and A.I.), Thrasher Research Fund (C. Prando), Institut de Recherches Servier (E.L., F.A. and A.I.) and Manton Foundation (L.D.N.).

Author information

Author notes

    • Bertrand Boisson
    • , Emmanuel Laplantine
    • , Carolina Prando
    • , Alain Israël
    • , Jean-Laurent Casanova
    •  & Capucine Picard

    These authors contributed equally to this work.

Affiliations

  1. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.

    • Bertrand Boisson
    • , Carolina Prando
    • , Avinash Abhyankar
    • , Giraldina Trevejo-Nunez
    • , Dusan Bogunovic
    •  & Jean-Laurent Casanova
  2. Laboratory of Molecular Signaling and Cell Activation, Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA) 2582, Institut Pasteur, Paris, France.

    • Emmanuel Laplantine
    •  & Alain Israël
  3. Laboratory of Genetic Disorders of Childhood and Pediatric Clinic, A. Nocivelli Institute for Molecular Medicine, Department of Pathology, Spedali Civili and Pediatric Clinic, University of Brescia, Brescia, Italy.

    • Silvia Giliani
    • , Evelina Mazzolari
    •  & Donatella Vairo
  4. Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.

    • Elisabeth Israelsson
    •  & Damien Chaussabel
  5. Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, USA.

    • Zhaohui Xu
    • , Alma-Martina Cepika
    • , Virginia Pascual
    •  & Damien Chaussabel
  6. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U980, Necker Medical School, Paris, France.

    • Laura Israël
    • , Maya Chrabieh
    • , Marjorie Hubeau
    • , Anne Puel
    • , Jean-Laurent Casanova
    •  & Capucine Picard
  7. Paris Descartes Université, Sorbonne Paris Cité, France.

    • Laura Israël
    • , Maya Chrabieh
    • , Marjorie Hubeau
    • , Damien Bonnet
    • , Pierre Quartier
    • , Jean-Christophe Fournet
    • , Anne Puel
    • , Jean-Laurent Casanova
    •  & Capucine Picard
  8. Washington University School of Medicine and Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Disease Research, Saint Louis, Missouri, USA.

    • Donna MacDuff
    •  & Herbert W Virgin
  9. Reference Center for Complex Congenital Heart Defects, Assistance Publique Hôpitaux de Paris (AP-HP), Necker Enfants Malades Hospital, Paris, France.

    • Fanny Bajolle
    •  & Damien Bonnet
  10. Pediatric Hematology-Immunology-Rheumatology Unit, AP-HP, Necker Enfants Malades Hospital, Paris, France.

    • Marianne Debré
    • , Pierre Quartier
    • , Jean-Laurent Casanova
    •  & Capucine Picard
  11. Institut Pasteur, Structural and Cellular Biochemistry Unit, CNRS, URA 2185, Paris, France.

    • Fabrice Agou
  12. Experimental Laboratory Immunology, Department of Microbiology and Immunology, Biomedical Science Group, Catholic University of Leuven, Leuven, Belgium.

    • Xavier Bossuyt
  13. Pathology Laboratory, AP-HP, Raymond Poincarré, Garches, France.

    • Caroline Rambaud
  14. Department of Pathology, Spedali Civili and University of Brescia, Brescia, Italy.

    • Fabio Facchetti
  15. Pathology Laboratory, AP-HP, Necker Enfants Malades Hospital, Paris, France.

    • Jean-Christophe Fournet
  16. Division of Immunology and The Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

    • Luigi D Notarangelo
  17. Study Center for Primary Immunodeficiencies, AP-HP, Necker Enfants Malades Hospital, Paris, France.

    • Capucine Picard

Authors

  1. Search for Bertrand Boisson in:

  2. Search for Emmanuel Laplantine in:

  3. Search for Carolina Prando in:

  4. Search for Silvia Giliani in:

  5. Search for Elisabeth Israelsson in:

  6. Search for Zhaohui Xu in:

  7. Search for Avinash Abhyankar in:

  8. Search for Laura Israël in:

  9. Search for Giraldina Trevejo-Nunez in:

  10. Search for Dusan Bogunovic in:

  11. Search for Alma-Martina Cepika in:

  12. Search for Donna MacDuff in:

  13. Search for Maya Chrabieh in:

  14. Search for Marjorie Hubeau in:

  15. Search for Fanny Bajolle in:

  16. Search for Marianne Debré in:

  17. Search for Evelina Mazzolari in:

  18. Search for Donatella Vairo in:

  19. Search for Fabrice Agou in:

  20. Search for Herbert W Virgin in:

  21. Search for Xavier Bossuyt in:

  22. Search for Caroline Rambaud in:

  23. Search for Fabio Facchetti in:

  24. Search for Damien Bonnet in:

  25. Search for Pierre Quartier in:

  26. Search for Jean-Christophe Fournet in:

  27. Search for Virginia Pascual in:

  28. Search for Damien Chaussabel in:

  29. Search for Luigi D Notarangelo in:

  30. Search for Anne Puel in:

  31. Search for Alain Israël in:

  32. Search for Jean-Laurent Casanova in:

  33. Search for Capucine Picard in:

Contributions

B.B., E.L., S.G., A.A., L.I., G.T.-N. and M.C. performed experiments. C. Prando, A.A. and D.V. performed genetic analysis. F.B., M.D., E.M., D. Bonnet., P.Q., L.D.N. and C. Picard provided all the clinical data for the patients. D. Bogunovic., D.M., M.H., F.A. and H.W.V. provided reagents and suggestions. X.B. and C. Picard performed immunological explorations. C.R., F.F. and J.-C.F. performed histological analysis. E.I., Z.X., A.-M.C., V.P. and D.C. performed transcriptome analysis. A.I., J.-L.C. and C. Picard coordinated the study, and B.B., E.L., C. Prando, V.P., D.C., L.D.N., A.P., A.I., J.-L.C. and C. Picard wrote the manuscript. All authors discussed the results and commented on the manuscript. B.B., E.L. and C. Prando equally contributed as first authors. S.G., E.I., Z.X. and A.A. equally contributed as second authors. V.P., D.C., L.D.N. and A.P. equally contributed as second to last authors. A.I., J.-L.C. and C. Picard equally contributed as last authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jean-Laurent Casanova.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note, Supplementary Figures 1–7

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ni.2457

Further reading