Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule

Abstract

The presence of immune memory at pathogen-entry sites is a prerequisite for protection. Nevertheless, the mechanisms that warrant immunity at peripheral interfaces are not understood. Here we show that the nonclassical major histocompatibility complex (MHC) class I molecule thymus leukemia antigen (TL), induced on dendritic cells interacting with CD8αα on activated CD8αβ+ T cells, mediated affinity-based selection of memory precursor cells. Furthermore, constitutive expression of TL on epithelial cells led to continued selection of mature CD8αβ+ memory T cells. The memory process driven by TL and CD8αα was essential for the generation of CD8αβ+ memory T cells in the intestine and the accumulation of highly antigen-sensitive CD8αβ+ memory T cells that form the first line of defense at the largest entry port for pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TL negatively affects the generation of memory cells from CD8αβ+ T cells.
Figure 2: TL mediates the death of activated CD8αβ+ T cells.
Figure 3: Activation-induced CD8αα rescues CD8αβ+ primary effector T cells from TL-induced cell death.
Figure 4: CD8αα expression correlates with the intensity of TCR activation.
Figure 5: CD8αα expression marks effector memory CD8αβ+ T cells in humans.
Figure 6: Retinoic acid promotes the affinity-based accumulation of CD8αα+CD8αβ+ T cells in the intestine.
Figure 7: Constitutive expression of TL on intestinal epithelial cells mediates the selection of mature memory CD8αβ+ T cells.

Similar content being viewed by others

References

  1. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  Google Scholar 

  2. Cheroutre, H. & Madakamutil, L. Mucosal effector memory T cells: the other side of the coin. Cell Mol. Life Sci. 62, 2853–2866 (2005).

    Article  CAS  Google Scholar 

  3. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  4. Masopust, D., Vezys, V., Wherry, E.J., Barber, D.L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  Google Scholar 

  5. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  6. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  7. Hansen, S.G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293–299 (2009).

    Article  CAS  Google Scholar 

  8. Pamer, E.G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).

    Article  CAS  Google Scholar 

  9. Mengaud, J., Ohayon, H., Gounon, P., Mege, R.M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).

    Article  CAS  Google Scholar 

  10. Bahjat, K.S. et al. Cytosolic entry controls CD8+-T-cell potency during bacterial infection. Infect. Immun. 74, 6387–6397 (2006).

    Article  CAS  Google Scholar 

  11. Starks, H. et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol. 173, 420–427 (2004).

    Article  CAS  Google Scholar 

  12. Madakamutil, L.T. et al. CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science 304, 590–593 (2004).

    Article  CAS  Google Scholar 

  13. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004).

    Article  CAS  Google Scholar 

  14. Leishman, A.J. et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294, 1936–1939 (2001).

    Article  CAS  Google Scholar 

  15. Hershberg, R. et al. Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc. Natl. Acad. Sci. USA 87, 9727–9731 (1990).

    Article  CAS  Google Scholar 

  16. Wu, M., van Kaer, L., Itohara, S. & Tonegawa, S. Highly restricted expression of the thymus leukemia antigens on intestinal epithelial cells. J. Exp. Med. 174, 213–218 (1991).

    Article  CAS  Google Scholar 

  17. Attinger, A. et al. Molecular basis for the high affinity interaction between the thymic leukemia antigen and the CD8αα molecule. J. Immunol. 174, 3501–3507 (2005).

    Article  CAS  Google Scholar 

  18. Olivares-Villagómez, D. et al. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 105, 17931–17936 (2008).

    Article  Google Scholar 

  19. Williams, M.A. & Bevan, M.J. Cutting edge: a single MHC class Ia is sufficient for CD8 memory T cell differentiation. J. Immunol. 175, 2066–2069 (2005).

    Article  CAS  Google Scholar 

  20. Eghtesady, P. et al. Expression of mouse Tla region class I genes in tissues enriched for γδ cells. Immunogenetics 36, 377–388 (1992).

    Article  CAS  Google Scholar 

  21. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. The crystal structure of a TL/CD8αα complex at 2.1 A resolution: implications for modulation of T cell activation and memory. Immunity 18, 205–215 (2003).

    Article  CAS  Google Scholar 

  23. Contini, P. et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and calcium-independent protein kinase C signaling pathways and for NF-κB and NF-AT nuclear translocation. J. Immunol. 175, 7244–7254 (2005).

    Article  CAS  Google Scholar 

  24. Contini, P. et al. Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur. J. Immunol. 33, 125–134 (2003).

    Article  CAS  Google Scholar 

  25. Fournel, S. et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).

    Article  CAS  Google Scholar 

  26. Puppo, F. et al. Soluble human MHC class I molecules induce soluble Fas ligand secretion and trigger apoptosis in activated CD8+ Fas (CD95)+ T lymphocytes. Int. Immunol. 12, 195–203 (2000).

    Article  CAS  Google Scholar 

  27. Arcaro, A. et al. CD8β endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56lck complexes. J. Exp. Med. 194, 1485–1495 (2001).

    Article  CAS  Google Scholar 

  28. Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8αα. Immunity 28, 149–159 (2008).

    Article  CAS  Google Scholar 

  29. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  Google Scholar 

  30. Chandele, A. & Kaech, S.M. Cutting edge: memory CD8 T cell maturation occurs independently of CD8αα. J. Immunol. 175, 5619–5623 (2005).

    Article  CAS  Google Scholar 

  31. Zehn, D., Lee, S.Y. & Bevan, M.J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  Google Scholar 

  32. Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  33. Osborne, L.C. et al. Impaired CD8 T cell memory and CD4 T cell primary responses in IL-7Rα mutant mice. J. Exp. Med. 204, 619–631 (2007).

    Article  CAS  Google Scholar 

  34. Trautmann, L. et al. Selection of T cell clones expressing high-affinity public TCRs within human cytomegalovirus-specific CD8 T cell responses. J. Immunol. 175, 6123–6132 (2005).

    Article  CAS  Google Scholar 

  35. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  36. Zhong, W. & Reinherz, E.L. CD8αα homodimer expression and role in CD8 T cell memory generation during influenza virus A infection in mice. Eur. J. Immunol. 35, 3103–3110 (2005).

    Article  CAS  Google Scholar 

  37. Le Bouteiller, P. & Solier, C. Is antigen presentation the primary function of HLA-G? Microbes Infect. 3, 323–332 (2001).

    Article  CAS  Google Scholar 

  38. Sargent, I.L. Does 'soluble' HLA-G really exist? Another twist to the tale. Mol. Hum. Reprod. 11, 695–698 (2005).

    Article  CAS  Google Scholar 

  39. Boulassel, M.R., Mercier, F., Gilmore, N. & Routy, J.P. Immunophenotypic patterns of CD8+ T cell subsets expressing CD8αα and IL-7Rα in viremic, aviremic and slow progressor HIV-1-infected subjects. Clin. Immunol. 124, 149–157 (2007).

    Article  CAS  Google Scholar 

  40. Belyakov, I.M., Isakov, D., Zhu, Q., Dzutsev, A. & Berzofsky, J.A. A novel functional CTL avidity/activity compartmentalization to the site of mucosal immunization contributes to protection of macaques against simian/human immunodeficiency viral depletion of mucosal CD4+ T cells. J. Immunol. 178, 7211–7221 (2007).

    Article  CAS  Google Scholar 

  41. Belyakov, I.M. et al. Impact of vaccine-induced mucosal high-avidity CD8+ CTLs in delay of AIDS viral dissemination from mucosa. Blood 107, 3258–3264 (2006).

    Article  CAS  Google Scholar 

  42. Daucher, M. et al. Virological outcome after structured interruption of antiretroviral therapy for human immunodeficiency virus infection is associated with the functional profile of virus-specific CD8+ T cells. J. Virol. 82, 4102–4114 (2008).

    Article  CAS  Google Scholar 

  43. Letvin, N.L. & Walker, B.D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat. Med. 9, 861–866 (2003).

    Article  CAS  Google Scholar 

  44. Vogel, T.U. et al. Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J. Virol. 77, 13348–13360 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.J. Bevan (University of Washington) for LM-N4 and LM-Q4; E. Stockert and L. Old (Memorial Sloan-Kettering) for anti-TL (HD168); M. Cheroutre for contributions; L. Qiao, X.Z. Wang and members of the Cheroutre and Kronenberg laboratories for discussions and technical assistance; and D. Littman (New York University School of Medicine) for ΔE8I mice. Supported by the US National Institutes of Health (R01 AI064584 and R01 AI050265 to H.C.; R01 AG10152 to M.K. and H.C.; and CA009385 to D.O.-V.), the Vanderbilt University Digestive Disease Research Center and the Vanderbilt-Meharry Center for AIDS Research (L.V.K.), the Austrian Science Fund (Project S9308-B05 to B.G.-L.) and the Austrian Federal Ministry of Science and Research (Future Leaders of Ageing Research in Europe; D.H.-B.). This is manuscript 1063 from the La Jolla Institute for Allergy & Immunology.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and Y.P., conceptual development and execution of the studies and preparation of the manuscript; Y.W.-Z., A.L., R.A. and I.B., technical assistance and input into data analyses; D.O.-V. and L.V.K., generation of TL-deficient mice; M.A.T., generation and backcrossing of TL-transgenic mice; D.H.-B. and B.G.-L., experiments with human samples; N.A., mice with mutation in the sequence encoding IL-7Rα Y449XXM; S.P.S., help with in vitro culture experiments; M.K., participation in discussions of the data and preparation of the manuscript; H.C., conception of ideas, generation of TL transgenic mice with the assistance of M.A.T., manuscript authorship and experiment supervision.

Corresponding author

Correspondence to Hilde Cheroutre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 903 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Park, Y., Wang-Zhu, Y. et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat Immunol 12, 1086–1095 (2011). https://doi.org/10.1038/ni.2106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing