Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β

Abstract

The molecular mechanisms that direct the development of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-β (TGF-β) controls the development of TCRαβ+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-β1 or T cell–specific deletion of TGF-β receptor I lacked TCRαβ+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-β1 had a larger population of TCRαβ+CD8αα+ IELs. We observed defective development of the TCRαβ+CD8αα+ IEL thymic precursors (CD4CD8TCRαβ+CD5+) in the absence of TGF-β. In addition, we found that TGF-β signaling induced CD8α expression in TCRαβ+CD8αα+ IEL thymic precursors and induced and maintained CD8α expression in peripheral populations of T cells. Our data demonstrate a previously unrecognized role for TGF-β in the development of TCRαβ+CD8αα+ IELs and the expression of CD8α in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice that lack TGF-β-signaling have fewer TCRαβ+CD8αα+ IELs.
Figure 2: Smad3−/− mice have fewer TCRαβ+CD8αα+ IELs.
Figure 3: Overexpression of TGF-β1 from T cells leads to a larger population of TCRαβ+CD8αα+ IELs.
Figure 4: TGF-β-deficient mice have a smaller population of DN TCRαβ+CD5+ thymocytes.
Figure 5: TGF-β induces CD8α expression on DN TCRαβ+CD5+ thymocytes.
Figure 6: TGF-β is needed to maintain expression of CD8 on peripheral T cells.
Figure 7: TGF-β induces expression of CD8α on peripheral CD4+ T cells in a Smad3-dependent manner.
Figure 8: Expression of Th-POK and Runx3 in CD4+CD8α and CD4+CD8α+ cells.

Similar content being viewed by others

References

  1. van Wijk, F. & Cheroutre, H. Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin. Immunol. 21, 130–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denning, T.L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Saurer, L. et al. Virus-induced activation of self-specific TCRαβ CD8αα intraepithelial lymphocytes does not abolish their self-tolerance in the intestine. J. Immunol. 172, 4176–4183 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guy-Grand, D. & Vassalli, P. Immunology. Tracing an orphan's genealogy. Science 305, 185–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Rocha, B., Vassalli, P. & Guy-Grand, D. The Vβ repertoire of mouse gut homodimeric αCD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, L.J., Acero, L.F., Zal, T. & Schluns, K.S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8αα IELs. J. Immunol. 183, 1044–1054 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Doisne, J.M. et al. iNKT cell development is orchestrated by different branches of TGF-β signaling. J. Exp. Med. 206, 1365–1378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuo, S., El Guindy, A., Panwala, C.M., Hagan, P.M. & Camerini, V. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 49, 543–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Podd, B.S., Aberg, C., Christopher, T.L., Perez-Cano, F. & Camerini, V. Late postnatal expansion of self-reactive CD8αα+ intestinal intraepithelial lymphocytes in mice. Autoimmunity 37, 537–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Christ, M. et al. Immune dysregulation in TGF-β 1-deficient mice. J. Immunol. 153, 1936–1946 (1994).

    CAS  PubMed  Google Scholar 

  19. Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hall, B.E. et al. Conditional overexpression of TGF-β 1 disrupts mouse salivary gland development and function. Lab. Invest. 90, 543–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, W. et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194, 439–453 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ouyang, W., Beckett, O., Ma, Q. & Li, M.O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Park, J.H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue, H.H. et al. IL-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 13759–13764 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Staton, T.L. et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat. Immunol. 7, 482–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Mintern, J.D., Maurice, M.M., Ploegh, H.L. & Schott, E. Thymic selection and peripheral activation of CD8 T cells by the same class I MHC/peptide complex. J. Immunol. 172, 699–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Parker, C.M. et al. A family of β 7 integrins on human mucosal lymphocytes. Proc. Natl. Acad. Sci. USA 89, 1924–1928 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, L. & Bosselut, R. CD4–CD8 lineage differentiation: Thpok-ing into the nucleus. J. Immunol. 183, 2903–2910 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9, 1122–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Parel, Y. & Chizzolini, C. CD4+CD8+ double positive (DP) T cells in health and disease. Autoimmun. Rev. 3, 215–220 (2004).

    Article  PubMed  Google Scholar 

  34. Das, G. et al. An important regulatory role for CD4+CD8αα T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 100, 5324–5329 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β 1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

    CAS  PubMed  Google Scholar 

  40. Hostert, A. et al. A CD8 genomic fragment that directs subset-specific expression of CD8 in transgenic mice. J. Immunol. 158, 4270–4281 (1997).

    CAS  PubMed  Google Scholar 

  41. Blanc, D. et al. Gene transfer of the Ly-3 chain gene of the mouse CD8 molecular complex: co-transfer with the Ly-2 polypeptide gene results in detectable cell surface expression of the Ly-3 antigenic determinants. Eur. J. Immunol. 18, 613–619 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577–31582 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene 23, 4232–4237 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Klunker, S. et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J. Exp. Med. 206, 2701–2715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hall, J.A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. McGrady and S. Wahl (National Institute of Dental and Craniofacial Research, National Institutes of Health) for Tgfb1−/− mice, and E. Stregevsky and J. Simone for technical assistance. Supported by the Intramural Research Program of the National Institutes of Health, National Institute of Dental and Craniofacial Research and National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

J.E.K. designed and did experiments, analyzed data and wrote the manuscript; T.M., B.F.Z. and P.Z. did experiments; B.E.H. and A.B.K. provided critical materials; A.C.C. and Y.X. did experiments and provided critical materials, R.B. provided materials and read the manuscript; and W.C. initiated and directed the research, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to WanJun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 8275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konkel, J., Maruyama, T., Carpenter, A. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat Immunol 12, 312–319 (2011). https://doi.org/10.1038/ni.1997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing