Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I

Abstract

Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25–mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Casp12−/− mice are more prone to WNV encephalitis and develop exacerbated neurological symptoms.
Figure 2: Caspase-12 is required for an effective type I interferon response to WNV in vivo and in vitro.
Figure 3: Caspase-12 is important for the type I interferon response to WNV and SeV in MEFs.
Figure 4: IFN-α and IFN-β signaling is intact in Casp12−/− MEFs.
Figure 5: Caspase-12 interacts with RIG-I.
Figure 6: Caspase-12 regulates RIG-I ubiquitination.

Similar content being viewed by others

References

  1. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Scott, A.M. & Saleh, M. The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ. 14, 23–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Saleh, M. et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Franchi, L., Eigenbrod, T., Munoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allen, I.C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas, P.G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat. Immunol. 11, 63–69 (2009).

    Article  PubMed  Google Scholar 

  10. Roy, S. et al. Confinement of caspase-12 proteolytic activity to autoprocessing. Proc. Natl. Acad. Sci. USA 105, 4133–4138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LeBlanc, P.M. et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3, 146–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tan, Y. et al. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 281, 16016–16024 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rao, R.V. et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276, 33869–33874 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Groenendyk, J. & Michalak, M. Endoplasmic reticulum quality control and apoptosis. Acta Biochim. Pol. 52, 381–395 (2005).

    CAS  PubMed  Google Scholar 

  17. Rao, R.V. et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277, 21836–21842 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Obeng, E.A. & Boise, L.H. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 280, 29578–29587 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Di Sano, F. et al. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J. Biol. Chem. 281, 2693–2700 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 14, 10–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Barton, G.M. & Medzhitov, R. Linking Toll-like receptors to IFN-α/β expression. Nat. Immunol. 4, 432–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Daffis, S., Samuel, M.A., Suthar, M.S., Gale, M. Jr & Diamond, M.S. Toll-like receptor 3 has a protective role against West Nile virus infection. J. Virol. 82, 10349–10358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Town, T. et al. Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30, 242–253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fredericksen, B.L., Keller, B.C., Fornek, J., Katze, M.G. & Gale, M. Jr. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 82, 609–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Loo, Y.M. et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gack, M.U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Arimoto, K. et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104, 7500–7505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104, 582–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Satoh, T. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. USA 107, 1512–1517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simon, D. et al. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J. Neurosci. 24, 1987–1995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Yoneyama, M. & Fujita, T. Function of RIG-I-like receptors in antiviral innate immunity. J. Biol. Chem. 282, 15315–15318 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Fabian, Z., Csatary, C.M., Szeberenyi, J. & Csatary, L.K. p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. J. Virol. 81, 2817–2830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X.D., Lankinen, H., Putkuri, N., Vapalahti, O. & Vaheri, A. Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology 333, 180–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Jordan, R., Wang, L., Graczyk, T.M., Block, T.M. & Romano, P.R. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J. Virol. 76, 9588–9599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bitko, V. & Barik, S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J. Cell. Biochem. 80, 441–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Samuel, M.A., Morrey, J.D. & Diamond, M.S. Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J. Virol. 81, 2614–2623 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Shrestha, B., Gottlieb, D. & Diamond, M.S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sejvar, J.J. et al. Neurocognitive and functional outcomes in persons recovering from West Nile virus illness. J. Neuropsychol. 2, 477–499 (2008).

    Article  PubMed  Google Scholar 

  44. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, K. et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J. Immunol. 176, 4520–4524 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, M.J. & Yoo, J.Y. Active caspase-1-mediated secretion of retinoic acid inducible gene-I. J. Immunol. 181, 7324–7331 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Tian, Z., Shen, X., Feng, H. & Gao, B. IL-1 beta attenuates IFN-αβ-induced antiviral activity and STAT1 activation in the liver: involvement of proteasome-dependent pathway. J. Immunol. 165, 3959–3965 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Yeretssian, G. et al. Gender differences in expression of the human caspase-12 long variant determines susceptibility to Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 106, 9016–9020 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escribese, M.M. et al. Estrogen inhibits dendritic cell maturation to RNA viruses. Blood 112, 4574–4584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clark, H.B. et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385–7395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.F. Anderson (Connecticut Agricultural Experiment Station) for WNV, and J.U. Jung (University of Southern California) for plasmids. Supported by the National Institutes of Health (AI-055749 and AI-50031), the Howard Hughes Medical Institute (E.F.), the Northeast Biodefense Center (U54-AI057158-Lipkin to P.W.) and the Canadian Institutes for Health Research (79410 to M.S.).

Author information

Authors and Affiliations

Authors

Contributions

P.W., A.A., M.S. and E.F. conceived hypotheses, analyzed data and prepared the manuscript; P.W. and A.A. designed and did experiments; Y.Z., H.S., J.D., L.Y., P.M.L. and K.D. aided in experiments; and all authors discussed the results and implications and commented on the manuscript at all stages. E.F. and M.S. contributed equally to this work.

Corresponding authors

Correspondence to Maya Saleh or Erol Fikrig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 262 kb)

Supplementary Video 1

Footprint-WT. Movie of wild type mouse on 5 day post i.p. infection with 1500 PFU of WNV (MOV 3617 kb)

Supplementary Video 2

Footprint-Casp12 KO. Movie of Caspase-12 knockout mouse on 5 day post i.p. infection with 1500 PFU of WNV (MOV 4826 kb)

Supplementary Video 3

Footprint-Casp1 KO. Movie of Caspase-12 knockout mouse on 5 day post i.p. infection with 1500 PFU of WNV (MOV 7610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Arjona, A., Zhang, Y. et al. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 11, 912–919 (2010). https://doi.org/10.1038/ni.1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing