Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A TNF- and c-Cbl-dependent FLIPS-degradation pathway and its function in Mycobacterium tuberculosis–induced macrophage apoptosis

Abstract

Apoptosis is central to the interaction between pathogenic mycobacteria and host macrophages. Caspase-8-dependent apoptosis of infected macrophages, which requires activation of the mitogen-activated protein (MAP) kinase p38, lowers the spread of mycobacteria. Here we establish a link between the release of tumor necrosis factor (TNF) and mycobacteria-mediated macrophage apoptosis. TNF activated a pathway involving the kinases ASK1, p38 and c-Abl. This pathway led to phosphorylation of FLIPS, which facilitated its interaction with the E3 ubiquitin ligase c-Cbl. This interaction triggered proteasomal degradation of FLIPS, which promoted activation of caspase-8 and apoptosis. Our findings identify a previously unappreciated signaling pathway needed for Mycobacterium tuberculosis–triggered macrophage cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASK1, p38 and TNF influence M. tuberculosis–mediated macrophage apoptosis.
Figure 2: TNF induces ASK1- and p38-dependent phosphorylation of FLIPS and subsequent FLIPS degradation.
Figure 3: TNF-induced ubiquitination of FLIPS is dependent on its phosphorylation.
Figure 4: Phosphorylation of FLIPS and induction of ubiquitination of FLIPS by c-Abl.
Figure 5: Ubiquitination and degradation of FLIPS requires c-Cbl.
Figure 6: TNF induces c-Cbl-mediated degradation of FLIPS and activation of caspase-8.
Figure 7: TNF-induced apoptosis of macrophages requires c-Cbl.
Figure 8: M. tuberculosis–induced macrophage apoptosis depends on c-Cbl.

Similar content being viewed by others

References

  1. Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  2. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  Google Scholar 

  3. Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  Google Scholar 

  4. Muppidi, J.R., Tschopp, J. & Siegel, R.M. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21, 461–465 (2004).

    Article  CAS  Google Scholar 

  5. Hsu, H., Huang, J., Shu, H.B., Baichwal, V. & Goeddel, D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  Google Scholar 

  6. Rothe, M., Wong, S.C., Henzel, W.J. & Goeddel, D.V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994).

    Article  CAS  Google Scholar 

  7. Chen, C., Edelstein, L.C. & Gelinas, C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL . Mol. Cell. Biol. 20, 2687–2695 (2000).

    Article  Google Scholar 

  8. Chu, Z.L. et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc. Natl. Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  Google Scholar 

  9. Goltsev, Y.V. et al. CASH, a novel caspase homologue with death effector domains. J. Biol. Chem. 272, 19641–19644 (1997).

    Article  CAS  Google Scholar 

  10. Hu, S., Vincenz, C., Ni, J., Gentz, R. & Dixit, V.M. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J. Biol. Chem. 272, 17255–17257 (1997).

    Article  CAS  Google Scholar 

  11. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  CAS  Google Scholar 

  12. Shu, H.B., Halpin, D.R. & Goeddel, D.V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6, 751–763 (1997).

    Article  CAS  Google Scholar 

  13. Gloks, A., Brenner, D., Fritsch, C., Krammer, P.H. & Lavrik, I.N. c-FLIPR, a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280, 14507–14513 (2005).

    Article  Google Scholar 

  14. Krueger, A., Baumann, S., Krammer, P.H. & Kirchoff, S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell. Biol. 21, 8247–8254 (2001).

    Article  CAS  Google Scholar 

  15. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and ERK signaling pathways. Curr. Biol. 10, 640–648 (2000).

    Article  CAS  Google Scholar 

  16. Perez, D. & White, E. E1A sensitizes cells to tumor necrosis factor α by downregulating c-FLIPS . J. Virol. 77, 2651–2662 (2003).

    Article  CAS  Google Scholar 

  17. Schaible, U.E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9, 1039–1046 (2003).

    Article  CAS  Google Scholar 

  18. Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90–94 (1997).

    Article  CAS  Google Scholar 

  19. Bhattacharyya, A. et al. Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. J. Biol. Chem. 278, 26517–26525 (2003).

    Article  CAS  Google Scholar 

  20. Noguchi, T. et al. Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J. Biol. Chem. 283, 7657–7665 (2008).

    Article  CAS  Google Scholar 

  21. Karin, M. & Lin, A.N.F. -κB at the crossroads of life and death. Nat. Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  22. Grethea, S., Aresb, M.P.S., Anderssona, T. & Pörn-Ares, M.I. p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-xL. Exp. Cell Res. 298, 632–642 (2004).

    Article  Google Scholar 

  23. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    Article  CAS  Google Scholar 

  24. Kim, Y., Shuh, N., Sporn, M. & Reed, J.C. An inducible pathway for degradation of FLIP protein sensitizes cells to TRAIL-induced apoptosis. J. Biol. Chem. 277, 22320–22329 (2002).

    Article  CAS  Google Scholar 

  25. Tourian, L., Jr, Zhao, H. & Srikant, C.B. p38α, but not p38β, inhibits the phosphorylation and presence of c-FLIPS in Drosoph. Inf. Serv.C to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling. J. Cell Sci. 117, 6459–6471 (2004).

    Article  CAS  Google Scholar 

  26. Holland, P.M. & Cooper, J.A. Protein modification: Docking sites for kinases. Curr. Biol. 9, R329–R331 (1999).

    Article  CAS  Google Scholar 

  27. Poukkula, M. et al. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280, 27345–27355 (2005).

    Article  CAS  Google Scholar 

  28. Abella, J.V. et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol. 25, 9632–9645 (2005).

    Article  CAS  Google Scholar 

  29. Le, Q. et al. c-Abl tyrosine kinase is also involved in LPS-mediated activation of macrophages: reduction of c-Abl leads to inhibition of macrophage activation induced by LPS and induction of apoptosis in macrophages treated by LPS. J. Immunol. 160, 3330–3336 (1998).

    CAS  PubMed  Google Scholar 

  30. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  31. Thien, C.B. & Langdon, W.Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  Google Scholar 

  32. Schmidt, M.H. & Dikic, I. The Cbl interactome and its functions. Nat. Rev. Mol. Cell Biol. 6, 907–919 (2005).

    Article  CAS  Google Scholar 

  33. Oksvold, M.P. et al. Serine mutations that abrogate ligand-induced ubiquitination and internalization of the EGF receptor do not affect c-Cbl association with the receptor. Oncogene 22, 8509–8518 (2003).

    Article  CAS  Google Scholar 

  34. Kyo, S. et al. Negative regulation of Lyn protein-tyrosine kinase by c-Cbl ubiquitin-protein ligase in Fc epsilon RI-mediated mast cell activation. Genes Cells 8, 825–836 (2003).

    Article  CAS  Google Scholar 

  35. Xiong, H. et al. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J. Biol. Chem. 280, 23531–23539 (2005).

    Article  CAS  Google Scholar 

  36. Schaible, U. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9, 1039–1045 (2003).

    Article  CAS  Google Scholar 

  37. Chen, M., Gan, H. & Remold, G.G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3703–3716 (2006).

    Google Scholar 

  38. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 25, 181–190 (2003).

    Article  Google Scholar 

  39. Rhoades, E.R., Cooper, A.M. & Orme, I.M. Chemokine response in mice infected with Mycobacterium tuberculosis. Infect. Immun. 63, 3871–3877 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Flynn, J.L. et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    Article  CAS  Google Scholar 

  41. Park, J.M., Greten, F.R., Li, Z.W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002).

    Article  CAS  Google Scholar 

  42. Backert, S., Feller, S.M. & Wessler, S. Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends Biochem. Sci. 33, 80–90 (2007).

    Article  Google Scholar 

  43. Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112–121 (2002).

    Article  CAS  Google Scholar 

  44. Chang, L. et al. The E3 ubiquitin ligase Itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

    CAS  PubMed  Google Scholar 

  45. Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem. 276, 35185–35193 (2001).

    Article  CAS  Google Scholar 

  46. Echarri, A. & Pendergast, A.M. Activated c-Abl is degraded by the ubiquitin-dependent proteasome pathway. Curr. Biol. 11, 1759–1765 (2001).

    Article  CAS  Google Scholar 

  47. Gómez-Muñoz, A., Kong, J.Y., Salh, B. & Steinbrecher, U.P. Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J. Lipid Res. 45, 99–105 (2004).

    Article  Google Scholar 

  48. Murphy, M.A. et al. Hyperplasia and enhanced T cell signalling via ZAP-70 in c-Cbl deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998).

    Article  CAS  Google Scholar 

  49. Tobiume, K. et al. ASK1 is required for sustained activation of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222–228 (2001).

    Article  CAS  Google Scholar 

  50. Pathak, S.K. et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol. 8, 610–618 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Davis (University of Massachusetts Medical School) for Flag-tagged p38 and p38(dn) and for Jnk and its dominant negative mutant; J. Han (Scripps Research Institute) for bacterial MKK6(E) and p38 constructs; and G. Superti-Furga (Austrian Academy of Science) for c-Abl and kinase-inactive c-Abl in pSGT. Supported by the Council of Scientific and Industrial Research of the Government of India (S.K.P.) and the Department of Science and Technology of the Government of India (J.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.K. designed and did research, analyzed data and wrote the paper; S.K.P., K.K., S.B., G.C. and S.P. did research; T.N., K.T., H.I., C.B.F.T. and W.Y.L. contributed tools; and J.B. designed the research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Joyoti Basu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, M., Pathak, S., Kumawat, K. et al. A TNF- and c-Cbl-dependent FLIPS-degradation pathway and its function in Mycobacterium tuberculosis–induced macrophage apoptosis. Nat Immunol 10, 918–926 (2009). https://doi.org/10.1038/ni.1754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing