Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate


CD4 and the transcription factor ThPOK are essential for the differentiation of major histocompatibility complex class II–restricted thymocytes into the helper T cell lineage; their genes (Cd4 and Zbtb7b (called 'ThPOK' here)) are repressed by transcriptional silencer elements in cytotoxic T cells. The molecular mechanisms regulating expression of these genes during helper T cell lineage differentiation remain unknown. Here we showed that inefficient upregulation of ThPOK, induced by removal of the proximal enhancer from the ThPOK locus, resulted in the transdifferentiation of helper lineage–specified cells into the cytotoxic T cell lineage. Furthermore, direct antagonism by ThPOK of the Cd4 and ThPOK silencers generated two regulatory loops that initially inhibited Cd4 downregulation and later stabilized ThPOK expression. Our results show how an initial lineage–specification signal can be amplified and stabilized during the lineage–commitment process.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CD8 lineage-differentiation potential of ThPOK-expressing CD4+CD8int thymocytes.
Figure 2: The ThPOK proximal enhancer is essential for efficient ThPOK upregulation.
Figure 3: The ThPOK proximal enhancer is essential for the normal development of CD4+ T cells.
Figure 4: Transdifferentiation of CD4+CD8 cells into CD4CD8 or CD4CD8+ cells.
Figure 5: Partial loss of helper identity and a partial acquisition of cytotoxic features by CD4+ T cells from ThPOKPEΔ/GFP mice.
Figure 6: ThPOK inhibits gene repression mediated by the Cd4 and ThPOK silencers in MHC class II–restricted cells.
Figure 7: Binding of ThPOK to silencers in the Cd4 and ThPOK loci antagonizes silencer activity.


  1. 1

    Rothenberg, E.V. & Dionne, C.J. Lineage plasticity and commitment in T-cell development. Immunol. Rev. 187, 96–115 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Laiosa, C.V., Stadtfeld, M. & Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol. 24, 705–738 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Ellmeier, W., Sawada, S. & Littman, D.R. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 17, 523–554 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Lundberg, K., Heath, W., Kontgen, F., Carbone, F.R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Bosselut, R., Guinter, T.I., Sharrow, S.O. & Singer, A. Unraveling a revealing paradox: Why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Chan, S., Correia-Neves, M., Dierich, A., Benoist, C. & Mathis, D. Visualization of CD4/CD8 T cell commitment. J. Exp. Med. 188, 2321–2333 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Sarafova, S.D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Leung, R.K. et al. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol. 2, 1167–1173 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Siu, G., Wurster, A.L., Duncan, D.D., Soliman, T.M. & Hedrick, S.M. A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13, 3570–3579 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Bilic, I. & Ellmeier, W. The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunol. Lett. 108, 1–9 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Dave, V.P., Allman, D., Keefe, R., Hardy, R.R. & Kappes, D.J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl. Acad. Sci. USA 95, 8187–8192 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D.J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999).

    CAS  Article  Google Scholar 

  21. 21

    He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    CAS  Article  Google Scholar 

  24. 24

    He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Grusby, M.J., Johnson, R.S., Papaioannou, V.E. & Glimcher, L.H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I. & Littman, D.R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Taniuchi, I., Sunshine, M.J., Festenstein, R. & Littman, D.R. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Mol. Cell 10, 1083–1096 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Kappes, D.J., He, X. & He, X. Role of the transcription factor Th-POK in CD4:CD8 lineage commitment. Immunol. Rev. 209, 237–252 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Jenkinson, S.R. et al. Expression of the transcription factor cKrox in peripheral CD8 T cells reveals substantial postthymic plasticity in CD4–CD8 lineage differentiation. J. Exp. Med. 204, 267–272 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Bilic, I. et al. Negative regulation of CD8 expression via Cd8 enhancer-mediated recruitment of the zinc finger protein MAZR. Nat. Immunol. 7, 392–400 (2006).

    CAS  Article  Google Scholar 

  37. 37

    Wildt, K.F. et al. The transcription factor zbtb7b promotes CD4 expression by antagonizing runx-mediated activation of the CD4 silencer. J. Immunol. 179, 4405–4414 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D.M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    CAS  Article  Google Scholar 

Download references


We thank D.J. Kappes (Fox Chase Cancer Center) for cDNA encoding helper-deficient mutant ThPOK; Y. Nakatani (Dana-Farber Cancer Institute) for the pOZ-FH-N vector; M. Matsuda for aggregation of embryonic stem cells; I. Hisanaga for microinjection of transgenes; H. Fujimoto and Y. Hachiman for cell sorting; and W. Ellmeier and S.L. Reiner for critical reading of the manuscript. Supported by Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (I.T.).

Author information




S.M. generated all mice with mutations at the ThPOK locus and did phenotypic analyses with assistance from C.M.; Y.N. did ChIP assays with tiling arrays with assistance from K.A.; T.I., K.M. and H.K. did in vitro culture in thymic lobes; and I.T. designed the experiments, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Ichiro Taniuchi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 956 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muroi, S., Naoe, Y., Miyamoto, C. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat Immunol 9, 1113–1121 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing