Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage

Abstract

The transcription factor ThPOK is required and sufficient for the generation of CD4+CD8 thymocytes, yet the mechanism by which ThPOK orchestrates differentiation into the CD4+ helper T cell lineage remains unclear. Here we used reporter mice to track the expression of transcription factors in developing thymocytes. Distal promoter–driven expression of the gene encoding the transcription factor Runx3 was restricted to major histocompatibility complex (MHC) class I–selected thymocytes. In ThPOK-deficient mice, such expression was derepressed in MHC class II–selected thymocytes, which contributed to their redirection to the CD8+ T cell lineage. In the absence of both ThPOK and Runx, redirection was prevented and cells potentially belonging to the CD4+ lineage, presumably specified independently of ThPOK, were generated. Our results suggest that MHC class II–selected thymocytes are directed toward the CD4+ lineage independently of ThPOK but require ThPOK to prevent Runx-dependent differentiation toward the CD8+ lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD8 SP lineage–specific Runx3 expression from its distal promoter is required for Cd4 silencing and CD103 expression in CD8+ T cells.
Figure 2: Runx3d and ThPOK reporter expression in developing thymocytes.
Figure 3: CD8+ lineage–specific Runx3dYFP expression is derepressed in ThPOK-deficient MHC class II-restricted thymocytes.
Figure 4: CD4+ T cell differentiation in the presence of lower quantities of ThPOK.
Figure 5: ThPOK is dispensable for the differentiation of CD4 SP thymocytes.
Figure 6: Derepression of CD8+ lineage-specific genes in MHC class II–restricted cells in the absence of ThPOK or in the presence of an insufficient amount of ThPOK.

Similar content being viewed by others

References

  1. Kappes, D.J., He, X. & He, X. CD4–CD8 lineage commitment: an inside view. Nat. Immunol. 6, 761–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nat. Rev. Immunol. 2, 909–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I. & Littman, D.R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Q.L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Grueter, B. et al. Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Barthlott, T., Kohler, H., Pircher, H. & Eichmann, K. Differentiation of CD4highCD8low coreceptor-skewed thymocytes into mature CD8 single-positive cells independent of MHC class I recognition. Eur. J. Immunol. 27, 2024–2032 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, S., Correia-Neves, M., Dierich, A., Benoist, C. & Mathis, D. Visualization of CD4/CD8 T cell commitment. J. Exp. Med. 188, 2321–2333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guidos, C.J., Danska, J.S., Fathman, C.G. & Weissman, I.L. T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J. Exp. Med. 172, 835–845 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Kydd, R., Lundberg, K., Vremec, D., Harris, A.W. & Shortman, K. Intermediate steps in thymic positive selection. Generation of CD48+ T cells in culture from CD4+8+, CD4int8+, and CD4+8int thymocytes with up-regulated levels of TCR-CD3. J. Immunol. 155, 3806–3814 (1995).

    CAS  PubMed  Google Scholar 

  23. Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Lundberg, K., Heath, W., Kontgen, F., Carbone, F.R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D.J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dave, V.P., Allman, D., Keefe, R., Hardy, R.R. & Kappes, D.J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl. Acad. Sci. USA 95, 8187–8192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Waltzer, L., Ferjoux, G., Bataille, L. & Haenlin, M. Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J. 22, 6516–6525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fossett, N., Hyman, K., Gajewski, K., Orkin, S.H. & Schulz, R.A. Combinatorial interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc. Natl. Acad. Sci. USA 100, 11451–11456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarafova, S.D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zijlstra, M. et al. Beta 2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344, 742–746 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Grusby, M.J., Johnson, R.S., Papaioannou, V.E. & Glimcher, L.H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Rockefeller University Gene Targeting Facility for the generation of ThPOK mutant mice with B6-C2J embryonic stem cells; J.H. Dong, A. Auerbach and W. Ho for microinjection; members of the laboratory for discussion; and J. Huh, M. Chong, A. Collins and S. Schwab for critical reading of the manuscript. Supported by the Leukemia and Lymphoma Society (T.E.) and the Howard Hughes Medical Institute (D.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.E. did all the experiments; and T.E. and D.R.L. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Takeshi Egawa or Dan R Littman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Table 1 (PDF 5056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egawa, T., Littman, D. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat Immunol 9, 1131–1139 (2008). https://doi.org/10.1038/ni.1652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing