Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences


We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Discovery and validation of a representative Y-chromosome CNV.
Figure 2: Y-chromosome phylogeny and haplogroup distribution.
Figure 3: Mutation events.
Figure 4: Explosive male-lineage expansions of the last 15,000 years.


  1. 1

    Jobling, M.A. & Tyler-Smith, C. The human Y chromosome: an evolutionary marker comes of age. Nat. Rev. Genet. 4, 598–612 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Wei, W. et al. A calibrated human Y-chromosomal phylogeny based on resequencing. Genome Res. 23, 388–395 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Poznik, G.D. et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science 341, 562–565 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Wilson Sayres, M.A., Lohmueller, K.E. & Nielsen, R. Natural selection reduced diversity on human Y chromosomes. PLoS Genet. 10, e1004064 (2014).

    Article  Google Scholar 

  5. 5

    Karmin, M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Batini, C. et al. Large-scale recent expansion of European patrilineages shown by population resequencing. Nat. Commun. 6, 7152 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Sikora, M.J., Colonna, V., Xue, Y. & Tyler-Smith, C. Modeling the contrasting Neolithic male lineage expansions in Europe and Africa. Investig. Genet. 4, 25 (2013).

    Article  Google Scholar 

  8. 8

    Helgason, A. et al. The Y-chromosome point mutation rate in humans. Nat. Genet. 47, 453–457 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Balanovsky, O. et al. Deep phylogenetic analysis of haplogroup G1 provides estimates of SNP and STR mutation rates on the human Y-chromosome and reveals migrations of Iranic speakers. PLoS One 10, e0122968 (2015).

    Article  Google Scholar 

  11. 11

    1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  12. 12

    Handsaker, R.E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Bellos, E., Johnson, M.R. & Coin, L.J.M. cnvHiTSeq: integrative models for high-resolution copy number variation detection and genotyping using population sequencing data. Genome Biol. 13, R120 (2012).

    Article  Google Scholar 

  14. 14

    Hammer, M.F. et al. Out of Africa and back again: nested cladistic analysis of human Y chromosome variation. Mol. Biol. Evol. 15, 427–441 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Groucutt, H.S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    Article  Google Scholar 

  16. 16

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Zhang, F., Gu, W., Hurles, M.E. & Lupski, J.R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Willems, T. et al. Population-scale sequencing data enables precise estimates of Y-STR mutation rates. Am. J. Hum. Genet. http://dx.doi.org/10.1016/j.ajhg.2016.04.001 (2016).

  19. 19

    Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Sudmant, P.H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    Article  Google Scholar 

  21. 21

    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    Article  Google Scholar 

  22. 22

    de Filippo, C., Bostoen, K., Stoneking, M. & Pakendorf, B. Bringing together linguistic and genetic evidence to test the Bantu expansion. Proc. R. Soc. B Biol. Sci. 279, 3256–3263 (2012).

    Article  Google Scholar 

  23. 23

    Jobling, M.A., Hollox, E., Hurles, M., Kivisild, T. & Tyler-Smith, C. Human Evolutionary Genetics 2nd edn (Garland Science, 2014).

  24. 24

    Allentoft, M.E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Harding, A.F. European Societies in the Bronze Age (Cambridge University Press, 2000).

  27. 27

    Bryant, E.F. & Patton, L.L. The Indo-Aryan Controversy: Evidence and Inference in Indian History (Routledge, 2005).

  28. 28

    Xue, Y. et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol. 19, 1453–1457 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Betzig, L. Means, variances, and ranges in reproductive success: comparative evidence. Evol. Hum. Behav. 33, 309–317 (2012).

    Article  Google Scholar 

  30. 30

    Zerjal, T. et al. The genetic legacy of the Mongols. Am. J. Hum. Genet. 72, 717–721 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Balaresque, P. et al. Y-chromosome descent clusters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations. Eur. J. Hum. Genet. 23, 1413–1422 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  33. 33

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv http://arxiv.org/abs/1207.3907 (2012).

  35. 35

    Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232 (2012).

    CAS  Article  Google Scholar 

  37. 37

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  38. 38

    DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Pique-Regi, R. et al. Sparse representation and Bayesian detection of genome copy number alterations from microarray data. Bioinformatics 24, 309–318 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Pique-Regi, R., Cáceres, A. & González, J.R. R-Gada: a fast and flexible pipeline for copy number analysis in association studies. BMC Bioinformatics 11, 380 (2010).

    Article  Google Scholar 

  41. 41

    Conrad, D.F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Perry, G.H. et al. Copy number variation and evolution in humans and chimpanzees. Genome Res. 18, 1698–1710 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Polley, S. et al. Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and population subsistence strategy. Proc. Natl. Acad. Sci. USA 112, 5105–5110 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Carpenter, D. et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum. Mol. Genet. 24, 3472–3480 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Verma, R.S. & Babu, A. Human Chromosomes: Principles & Techniques 2nd edn. (McGraw-Hill, 1995).

  46. 46

    Gribble, S.M. et al. Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PLoS One 8, e60482 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    CAS  Article  Google Scholar 

  48. 48

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  49. 49

    McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  Article  Google Scholar 

  51. 51

    Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS  Article  Google Scholar 

  52. 52

    van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).

    Article  Google Scholar 

  53. 53

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  Article  Google Scholar 

  54. 54

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  Article  Google Scholar 

  55. 55

    Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).

    Article  Google Scholar 

  56. 56

    Hudson, R.R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    CAS  Article  Google Scholar 

  57. 57

    Lohmueller, K.E., Bustamante, C.D. & Clark, A.G. Methods for human demographic inference using haplotype patterns from genomewide single-nucleotide polymorphism data. Genetics 182, 217–231 (2009).

    CAS  Article  Google Scholar 

  58. 58

    Lohmueller, K.E., Bustamante, C.D. & Clark, A.G. The effect of recent admixture on inference of ancient human population history. Genetics 185, 611–622 (2010).

    CAS  Article  Google Scholar 

Download references


We thank the 1000 Genomes Project sample donors for making this work possible, all Project members for their contributions, and A. Martin for ADMIXTURE results. The tree in Figure 2 was drawn using FigTree. G.D.P. was supported by the National Science Foundation (NSF) Graduate Research Fellowship under grant DGE-1147470 and by National Library of Medicine training grant LM-007033. Work at the Wellcome Trust Sanger Institute (Q.A., R.B., M.C., Y.C., S.L., A. Massaia, S.A. McCarthy, C.T.-S., Y.X., and F.Y.) was supported by Wellcome Trust grant 098051. F.L.M. was supported by National Institutes of Health (NIH) grant 1R01GM090087, by NSF grant DMS-1201234, and by a postdoctoral fellowship from the Stanford Center for Computational, Evolutionary and Human Genomics (CEHG). T.F.W. was supported by an AWS Education Grant, and the work of T.F.W., M.G., and Y.E. was supported in part by NIJ award 2014-DN-BX-K089. M.C. is supported by a Fundación Barrié Fellowship. H.S. and L. Coin are supported by Australian Research Council grants DP140103164 and FT110100972, respectively. M.G. was supported by a National Defense Science and Engineering Graduate Fellowship. G.R.S.R. was supported by the European Molecular Biology Laboratory and the Sanger Institute through an EBI–Sanger Postdoctoral Fellowship. X.Z.-B., P.F., D.R.Z., and L. Clarke were supported by Wellcome Trust grants 085532, 095908, and 104947 and by the European Molecular Biology Laboratory. P.A.U. was supported by SAP grant SP0#115016. C.L. was supported in part by NIH grant U41HG007497. Y.E. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. C.D.B. was supported by NIH grant 5R01HG003229-09.

Author information





G.D.P., Y.X., C.D.B., and C.T.-S. conceived and designed the project. R.B., S.L., and F.Y. generated FISH data. A. Malhotra, M.R., E.C., C.Z., and C.L. generated aCGH data. G.D.P., Y.X., F.L.M., T.F.W., A. Massaia, M.A.W.S., Q.A., S.A. McCarthy, A.N., S.K., Y.C., J.L.R.-F., M.C., H.S., M.G., R.D., G.R.S.R., T.W.F., E.G., A. Marcketta, D.M., X.Z.-B., G.R.A., S.A. McCarroll, P.F., P.A.U., L. Coin, D.R.Z., L. Clarke, A.A., Y.E., R.E.H., C.D.B., and C.T.-S. analyzed the data. G.D.P., Y.X., F.L.M., T.F.W., A. Massaia, M.A.W.S., Q.A., and C.T.-S. wrote the manuscript. All authors reviewed, revised, and provided feedback on the manuscript.

Corresponding authors

Correspondence to Carlos D Bustamante or Chris Tyler-Smith.

Ethics declarations

Competing interests

G.D.P. and A.A. are employees of 23andMe. P.F. is a member of the Scientific Advisory Board (SAB) for Omicia, Inc. P.A.U. has consulted for and owns stock options of 23andMe. Y.E. is an SAB member of Identify Genomics, BigDataBio, and Solve, Inc. C.D.B. is on the SABs of AncestryDNA, BigDataBio, Etalon DX, Liberty Biosecurity, and Personalis. He is also a founder and SAB chair of IdentifyGenomics. None of these entities had a role in the design, execution, interpretation, or presentation of this study.

Additional information

A list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–31, Supplementary Tables 1–19 and Supplementary Note. (PDF 16615 kb)

Supplementary Data

Supplementary Data on SNVs, CNVs, STRs, haplogroups, phylogenetic analyses, functional annotations, mtDNA analysis, and expansion analyses. (ZIP 6186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poznik, G., Xue, Y., Mendez, F. et al. Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat Genet 48, 593–599 (2016). https://doi.org/10.1038/ng.3559

Download citation

Further reading