Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes

Abstract

Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate ependymoma oncogenes and TSGs.
Figure 2: In vivo screen of candidate ependymoma oncogenes.
Figure 3: Enrichment of candidate oncogenes in NSC pool-derived tumors.
Figure 4: Validation of ependymoma oncogenes.
Figure 5: In vivo ependymoma TSG screen.
Figure 6: Ependymoma oncogene and TSG trafficking of growth factor receptors.
Figure 7: Suppression of cholesterol biosynthesis in cerebral ependymomas.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson, R.A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma. Nature 506, 451–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atkinson, J.M. et al. An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20, 384–399 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mack, S.C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Chautard, E., Ouédraogo, Z., Biau, J. & Verrelle, P. Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J. Neurooncol. 117, 205–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, R., Wang, E., Peng, G., Dai, H. & Lin, S.-Y. Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage. Cell Cycle 12, 2033–2041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller, M., Pym, E.C., Tong, A. & Davis, G.W. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 69, 749–762 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tian, M., Xu, C.S., Montpetit, R. & Kramer, R.H. Rab3A mediates vesicle delivery at photoreceptor ribbon synapses. J. Neurosci. 32, 6931–6936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, W. et al. Peroxiredoxin 2 is upregulated in colorectal cancer and contributes to colorectal cancer cells' survival by protecting cells from oxidative stress. Mol. Cell. Biochem. 387, 261–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Donson, A.M. et al. Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J. Immunol. 183, 7428–7440 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, W. et al. Mammalian DNA2 helicase/nuclease cleaves Gquadruplex DNA and is required for telomere integrity. EMBO J. 32, 1425–1439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anazawa, Y., Arakawa, H., Nakagawa, H. & Nakamura, Y. Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway. Oncogene 23, 7621–7627 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hsu, C.-H. et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2, 568–579 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Poage, G.M. et al. Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer. Cancer Res. 72, 2728–2737 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, X. et al. Unc-51–like kinase 1/2–mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl. Acad. Sci. USA 104, 5842–5847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, H., Sasaki, T., Minoshima, S. & Shimizu, N. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway. Genomics 90, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell 17, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moughamian, A.J., Osborn, G.E., Lazarus, J.E., Maday, S. & Holzbaur, E.L.F. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190–13203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eggers, C.T., Schafer, J.C., Goldenring, J.R. & Taylor, S.S. D-AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin receptor recycling. J. Biol. Chem. 284, 32869–32880 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wojtal, K.A., de Vries, E., Hoekstra, D. & van IJzendoorn, S.C.D. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIα anchoring and glucosylceramide. Mol. Biol. Cell 17, 3638–3650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Remeseiro, S. et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076–2089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsutsui, T. et al. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J. Biol. Chem. 288, 20955–20965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldenring, J.R. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mosesson, Y., Mills, G.B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 8, 835–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Sie, M. et al. Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma. PLoS ONE 10, e0122555 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sikkema, A.H. et al. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res. 69, 5987–5995 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Gaist, D. et al. Use of statins and risk of glioma: a nationwide case-control study in Denmark. Br. J. Cancer 108, 715–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaist, D., Hallas, J., Friis, S., Hansen, S. & Sørensen, H.T. Statin use and survival following glioblastoma multiforme. Cancer Epidemiol. 38, 722–727 (2014).

    Article  PubMed  Google Scholar 

  34. Nam, K.T. et al. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J. Clin. Invest. 120, 840–849 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morrison, H.A. et al. Regulation of early endosomal entry by the Drosophila tumor suppressors Rabenosyn and Vps45. Mol. Biol. Cell 19, 4167–4176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tabori, U. et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J. Clin. Oncol. 24, 1522–1528 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Zani, V.J. et al. Molecular cloning of complex chromosomal translocation t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphoma cell line defines a new gene (BCL7A) with homology to caldesmon. Blood 87, 3124–3134 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to F.B. Gertler (Massachusetts Institute of Technology) and S. Gupton (University of North Carolina) for the generous gift of the VAMP7-phlorin construct and the staffs of the Hartwell Center for Bioinformatics and Biotechnology, the Small Animal Imaging Center, the Animal Resources Center, the Cell and Tissue Imaging Center, and the Flow Cytometry and Cell Sorting Shared Resource at St. Jude Children's Research Hospital for technical assistance. This work was supported by grants from the US National Institutes of Health (R01CA129541, P01CA96832 and P30CA021765, R.J.G.), by the Collaborative Ependymoma Research Network (CERN) and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Contributions

K.M.M. and D.S.C. conducted the great majority of the experiments and contributed to their design. E.W., N.B., J.D., C.E., B.N., R.T., M.C. and T.A.K. conducted mouse experimental work. G.N., S.O., Y.-D.W. and D.F. conducted microarray and deep sequencing studies. K.W. assisted with human genomic analyses. K.G. and D.W.E. conducted all neuropathological reviews. A.O.T. conducted all statistical analyses. R.J.G. conceived, designed and oversaw the study. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Richard J Gilbertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Relative gain and loss of loci harboring ependymoma candidate oncogenes and TSGs in human cancers.

Heat maps report the relative gain and loss of loci harboring candidate ependymoma oncogenes and TSGs, respectively, across 3,116 samples of 9 different human tumors reported on the COSMIC database.

Supplementary Figure 2 Relative gain and loss of validated oncogenes and TSGs and non-validated candidates in human cancer.

Relative gain and loss of validated oncogenes and TSGs and non-validated candidates across 3,116 samples of 9 different human tumors reported on the COSMIC database (boxes extend from the 25th to 75th percentiles and contain a horizontal line marking the median value; whiskers extend to the maximum and minimum values).

Supplementary Figure 3 AGDEX analysis of human and mouse ependymomas.

AGDEX analysis comparing the transcriptomic similarities of human cerebral ependymoma positive or negative for C11orf95-RELA fusion with our three new mouse models of cerebral ependymoma driven by BCL7C, RAB3A or ZNF668.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note. (PDF 318 kb)

Supplementary Table 1

Candidate ependymoma oncogenes detected by integrated gene expression and copy number analysis of human ependymoma. (XLS 41 kb)

Supplementary Table 2

Candidate ependymoma tumor-suppressor genes detected by integrated gene expression and copy number analysis of human ependymoma. (XLS 54 kb)

Supplementary Table 3

Diploid control genes that are not amplified or overexpressed in human ependymoma. (XLS 33 kb)

Supplementary Table 4

Details of individual mice harboring pools 1–11 of NSCs carrying candidate oncogenes. (XLS 67 kb)

Supplementary Table 5

Details of individual mice harboring NSCs carrying diploid control genes. (XLS 36 kb)

Supplementary Table 6

Details of individual mice harboring NSCs carrying singlecandidate oncogenes. (XLS 96 kb)

Supplementary Table 7

The top most positively and negatively enriched gene sets common to mouse ependymomas driven by RAB3A, BCL7C and ZNF668 relative to cNSCs, detected by GSEA. (XLS 95 kb)

Supplementary Table 8

Details of individual mice harboring pools 1–4 of EPHB2-transduced cNSCs carrying shRNAs targeting candidate TSGs. (XLS 43 kb)

Supplementary Table 9

Validated ependymoma oncogenes and tumor-suppressor genes identified in in vivo screens. (XLS 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohankumar, K., Currle, D., White, E. et al. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet 47, 878–887 (2015). https://doi.org/10.1038/ng.3323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3323

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer