Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FBXL10 protects Polycomb-bound genes from hypermethylation

Subjects

Abstract

Nearly all CpG-dense promoters are occupied by the multidomain chromosomal protein FBXL10. We show here that complete inactivation of the Fbxl10 gene leads to dense de novo methylation only of promoters that are co-occupied by both FBXL10 and Polycomb repressive complexes; this methylation results in pervasive defects in embryonic development and the death of homozygous Fbxl10-mutant embryos at midgestation. Deletion of key components of Polycomb repressive complexes 1 and 2 did not lead to ectopic genomic methylation. These results indicate that FBXL10 protects Polycomb-occupied promoters against ectopic de novo methylation. To our knowledge, FBXL10 is the first reported factor whose loss leads to a gain in genomic DNA methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and domain organization of the FBXL10 gene and protein, and characterization of the gene-trap truncation allele.
Figure 2: Retention of ES cell characteristics and pluripotency of Fbxl10T/T ES cells.
Figure 3: DNA hypermethylation in Fbxl10T/T ES cells.
Figure 4: Effect of the de novo methylation induced by ablation of FBXL10 on gene expression.
Figure 5: Rescue of methylation and transcriptional phenotypes by restoration of FBXL10-2 expression.
Figure 6: Chromatin context of DNA sequences prone to hypermethylation in Fbxl10T/T ES cells.
Figure 7: Effect of removal of FBXL10 on RING1B distribution and lack of de novo methylation after genetic ablation of core components of PRC1 and PRC2.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Goll, M.G. & Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  Google Scholar 

  2. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  3. Beuchle, D., Struhl, G. & Müller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128, 993–1004 (2001).

    CAS  PubMed  Google Scholar 

  4. Tanay, A., O′Donnell, A.H., Damelin, M. & Bestor, T.H. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc. Natl. Acad. Sci. USA 104, 5521–5526 (2007).

    Article  CAS  Google Scholar 

  5. Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  Google Scholar 

  6. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    Article  CAS  Google Scholar 

  7. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  Google Scholar 

  8. Suzuki, T., Minehata, K.-I., Akagi, K., Jenkins, N.A. & Copeland, N.G. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J. 25, 3422–3431 (2006).

    Article  CAS  Google Scholar 

  9. Farcas, A.M. et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  Google Scholar 

  10. He, J., Kallin, E.M., Tsukada, Y.-I. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nat. Struct. Mol. Biol. 15, 1169–1175 (2008).

    Article  CAS  Google Scholar 

  11. Gearhart, M.D., Corcoran, C.M., Wamstad, J.A. & Bardwell, V.J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 26, 6880–6889 (2006).

    Article  CAS  Google Scholar 

  12. Wu, X., Johansen, J.V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  Google Scholar 

  13. Turner, S.A. & Bracken, A.P.A. 'Complex' issue: deciphering the role of variant PRC1 in ESCs. Cell Stem Cell 12, 145–146 (2013).

    Article  CAS  Google Scholar 

  14. Fukuda, T., Tokunaga, A., Sakamoto, R. & Yoshida, N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46, 614–624 (2011).

    Article  CAS  Google Scholar 

  15. Blackledge, N.P. et al. Variant PRC1 complex–dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  Google Scholar 

  16. Testoni, S. et al. KDM2B is implicated in bovine lethal multi-organic developmental dysplasia. PLoS ONE 7, e45634 (2012).

    Article  CAS  Google Scholar 

  17. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    Article  CAS  Google Scholar 

  18. Boyle, P. et al. Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol. 13, R92 (2012).

    Article  CAS  Google Scholar 

  19. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  Google Scholar 

  20. Duffié, R. et al. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes Dev. 28, 463–478 (2014).

    Article  Google Scholar 

  21. Leeb, M. & Wutz, A. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J. Cell Biol. 178, 219–229 (2007).

    Article  CAS  Google Scholar 

  22. Morin-Kensicki, E.M., Faust, C., LaMantia, C. & Magnuson, T. Cell and tissue requirements for the geneeed during mouse gastrulation and organogenesis. Genesis 31, 142–146 (2002).

    Article  Google Scholar 

  23. Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  Google Scholar 

  24. Leitch, H.G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

    Article  CAS  Google Scholar 

  25. Carlone, D.L. et al. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol. 25, 4881–4891 (2005).

    Article  CAS  Google Scholar 

  26. Pemberton, H. et al. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblas00ts. Genome Biol. 15, R23 (2014).

    Article  Google Scholar 

  27. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    Article  CAS  Google Scholar 

  28. Lorincz, M.C., Schübeler, D., Hutchinson, S.R., Dickerson, D.R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell. Biol. 22, 7572–7580 (2002).

    Article  CAS  Google Scholar 

  29. Biniszkiewicz, D. et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol. 22, 2124–2135 (2002).

    Article  CAS  Google Scholar 

  30. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    Article  Google Scholar 

  31. Brookes, E. et al. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10, 157–170 (2012).

    Article  CAS  Google Scholar 

  32. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  Google Scholar 

  33. Lienert, F. et al. Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet. 7, e1002090 (2011).

    Article  CAS  Google Scholar 

  34. Peng, J.C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  Google Scholar 

  35. Seila, A.C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  Google Scholar 

  36. Schmitz, S.U. et al. Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J. 30, 4586–4600 (2011).

    Article  CAS  Google Scholar 

  37. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  38. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 25, 1110–1111 (2009).

    Article  Google Scholar 

  39. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  40. Kumaki, Y., Oda, M. & Okano, M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res. 36, W170–W175 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Okamoto, R. Margueron and E. Heard (Institut Curie) for Ezh2−/− mutant ES cells, L. Di Croce (Centre for Genomic Regulation (CRG) and Pompeu Fabra University (UPF)) for DNA from Eed−/− and Ring1b−/− ES cells, K. Anderson and O. Yarychkivska for comments on the manuscript and V. Bardwell (University of Minnesota, Minneapolis) for her gift of antiserum to FBXL10. This study was supported by grants from the US National Institutes of Health to J.R.E. and T.H.B. and by a grant from the US Department of Defense to J.R.E. M.B. was supported in part by the Phillippe Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.B., J.R.E. and T.H.B. designed the study, analyzed the data and wrote the manuscript. M.B. performed the experiments. J.R.E. analyzed RRBS, ChIP-seq and RNA-seq data.

Corresponding author

Correspondence to Timothy H Bestor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Table 1. (PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulard, M., Edwards, J. & Bestor, T. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat Genet 47, 479–485 (2015). https://doi.org/10.1038/ng.3272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing