Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma

Abstract

Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis1. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs2,3,4,5. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase–RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Recurrent genetic alterations in pediatric HGG.
Figure 2: ACVR1 mutations in DIPG activate BMP signaling.
Figure 3: Structural variants generate oncogenic chimeric NTRK fusion proteins.
Figure 4: Pediatric HGG alterations in histone modifiers or chromatin regulators.
Figure 5: Circos plots showing the range of structural alterations in pediatric HGG.

References

  1. 1

    Gottardo, N.G. & Gajjar, A. Chemotherapy for malignant brain tumors of childhood. J. Child Neurol. 23, 1149–1159 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Pollack, I.F. et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res. 61, 7404–7407 (2001).

    CAS  PubMed  Google Scholar 

  3. 3

    Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Khuong-Quang, D.A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Faury, D. et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J. Clin. Oncol. 25, 1196–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Qu, H.Q. et al. Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro-oncol. 12, 153–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Paugh, B.S. et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J. Clin. Oncol. 29, 3999–4006 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Paugh, B.S. et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28, 3061–3068 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Schiffman, J.D. et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res. 70, 512–519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Puget, S. et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE 7, e30313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Zarghooni, M. et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. J. Clin. Oncol. 28, 1337–1344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  15. 15

    Bax, D.A. et al. A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin. Cancer Res. 16, 3368–3377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Barrow, J. et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro-oncol. 13, 212–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Shore, E.M. & Kaplan, F.S. Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva. Curr. Osteoporos. Rep. 9, 83–88 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Shore, E.M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Chaikuad, A. et al. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J. Biol. Chem. 287, 36990–36998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Bagarova, J. et al. Constitutively active ALK2 receptor mutants require type II receptor cooperation. Mol. Cell. Biol. 33, 2413–2424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Shen, Q. et al. The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. J. Clin. Invest. 119, 3462–3472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Cannon, J.E., Upton, P.D., Smith, J.C. & Morrell, N.W. Intersegmental vessel formation in zebrafish: requirement for VEGF but not BMP signalling revealed by selective and non-selective BMP antagonists. Br. J. Pharmacol. 161, 140–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Bond, A.M., Bhalala, O.G. & Kessler, J.A. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev. Neurobiol. 72, 1068–1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Zhao, H., Ayrault, O., Zindy, F., Kim, J.H. & Roussel, M.F. Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev. 22, 722–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Piccirillo, S.G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour–initiating cells. Nature 444, 761–765 (2006).

    Article  CAS  Google Scholar 

  27. 27

    Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Harel, L., Costa, B. & Fainzilber, M. On the death Trk. Dev. Neurobiol. 70, 298–303 (2010).

    CAS  PubMed  Google Scholar 

  29. 29

    Thiele, C.J., Li, Z. & McKee, A.E. On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res. 15, 5962–5967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 45, 602–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Jones, D.T. et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 45, 927–932 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Lannon, C.L. & Sorensen, P.H. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin. Cancer Biol. 15, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Li, Z. et al. ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 12, 542–558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Eguchi, M. et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93, 1355–1363 (1999).

    CAS  PubMed  Google Scholar 

  36. 36

    Butti, M.G. et al. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 28, 15–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Cetinbas, N. et al. Mutation of the salt bridge–forming residues in the ETV6 SAM domain interface blocks ETV6-NTRK3 induced cellular transformation. J. Biol. Chem. 288, 27940–27950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Bax, D.A. et al. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin. Cancer Res. 15, 5753–5761 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Li, G. et al. Expression of epidermal growth factor variant III (EGFRvIII) in pediatric diffuse intrinsic pontine gliomas. J. Neurooncol. 108, 395–402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Fontebasso, A.M. et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 125, 659–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Chan, K.M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Lewis, P.W. et al. Inhibition of PRC2 activity by a gain-of-function H3 H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Venneti, S. et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 23, 558–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Füllgrabe, J., Kavanagh, E. & Joseph, B. Histone onco-modifications. Oncogene 30, 3391–3403 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Dubuc, A.M. et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125, 373–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Jones, D.T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Pugh, T.J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Lin, C.Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Killela, P.J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kleiblova, P. et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell Biol. 201, 511–521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Torchia, E.C., Boyd, K., Rehg, J.E., Qu, C. & Baker, S.J. EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol. Cell. Biol. 27, 7918–7934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zhang, J. et al. SNPdetector: a software tool for sensitive and accurate SNP detection. PLOS Comput. Biol. 1, e53 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998).

    Article  CAS  Google Scholar 

  62. 62

    Rousseeuw, P. Least Median Squares Regression. J. Am. Stat. Assoc. 79, 871–880 (1984).

    Article  Google Scholar 

  63. 63

    Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide–based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Persons, D.A. et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93, 488–499 (1999).

    Article  CAS  Google Scholar 

  67. 67

    Bajenaru, M.L. et al. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100–5113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    Article  CAS  Google Scholar 

  69. 69

    Fraser, M.M. et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 64, 7773–7779 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Endersby, R., Zhu, X., Hay, N., Ellison, D.W. & Baker, S.J. Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res. 71, 4106–4116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Korbel, J.O. & Campbell, P.J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the St. Jude Children's Research Hospital Tissue Resource Facility and B. Gordon, M. Johnson, S. Brown and C. Calabrese in the St. Jude Small Animal Imaging Core for expert assistance with intracranial implantations. We thank E. Shore and A. Culbert (University of Pennsylvania) for helpful advice with antibody selection. This work was supported by the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, by the American Lebanese and Syrian Associated Charities (ALSAC) of St. Jude Children's Research Hospital, by grants from the US National Institutes of Health (P01 CA096832 to S.J.B., Jinghui Zhang and D.W.E. and R01 CA135554 to S.J.B.), by the Cure Starts Now Foundation and the Smile for Sophie Forever Foundation, and by Tyler's Treehouse and Musicians Against Childhood Cancer.

Author information

Affiliations

Consortia

Contributions

S.J.B., Jinghui Zhang, A.K.D., B.S.P., J.E., L.D., E.R.M., R.K.W., M.R.T., J.R.D. and D.W.E. designed experiments or supervised research. A.G., A.B., C.W., F.A.B. and C.J. provided samples or clinical data. G.W., A.K.D., B.S.P., S.L.R., B.J., Y.L., X.Z., C.Q., X.C., Junyuan Zhang, J.E., M.E., X.M., C.L., P.N., E.H., M.R., S.P., T.L., A.O.-T., R.H., R.K., M.P., P.G., J.B., L.W., H.L.M., K.B., B.V., D.Y., J.C.R., K.O., R.S.F., L.L.F., L.D., E.R.M., R.K.W., M.R.T., J.R.D., D.W.E., Jinghui Zhang and S.J.B. performed experiments, analyzed data or prepared tables and figures. D.W.E. completed all pathological evaluations. S.J.B., Jinghui Zhang, G.W. and A.K.D. wrote the manuscript with contributions from D.W.E., J.R.D. and M.R.T.

Corresponding authors

Correspondence to Jinghui Zhang or Suzanne J Baker.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–10 (PDF 5585 kb)

Supplementary Tables

Supplementary Tables 1–13 (XLSX 3927 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project., Wu, G., Diaz, A. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46, 444–450 (2014). https://doi.org/10.1038/ng.2938

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing