Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism

Abstract

Among 5,000,000 fungal species1, C. albicans is exceptional in its lifelong association with humans, either within the gastrointestinal microbiome or as an invasive pathogen2. Opportunistic infections are generally ascribed to defective host immunity3 but may require specific microbial programs. Here we report that exposure of C. albicans to the mammalian gut triggers a developmental switch, driven by the Wor1 transcription factor, to a commensal cell type. Wor1 expression was previously observed only in rare genetic backgrounds4,5,6, where it controls a white-opaque switch in mating4,5,6,7. We show that passage of wild-type cells through the mouse gastrointestinal tract triggers WOR1 expression and a novel phenotypic switch. The resulting GUT (gastrointestinally induced transition) cells differ morphologically and functionally from previously defined cell types, including opaque cells, and express a transcriptome that is optimized for the digestive tract. The white-GUT switch illuminates how a microorganism can use distinct genetic programs to transition between commensalism and invasive pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EFG1 inhibits and WOR1 promotes C. albicans fitness in the commensal milieu.
Figure 2: Wor1 promotes a white-GUT transition that confers enhanced fitness in the mammalian gastrointestinal tract.
Figure 3: GUT cells are distinct from previously identified opaque cells.
Figure 4: GUT and opaque cells exhibit overlapping but distinct patterns of gene expression.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Blackwell, M. The fungi: 1, 2, 3 ... 5.1 million species? Am. J. Bot. 98, 426–438 (2011).

    Article  Google Scholar 

  2. Odds, F.C. Candida and Candidosis, a Review and Bibliography (W.B. Saunders, London, 1988).

  3. Casadevall, A. & Pirofski, L.A. Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot. Cell 6, 2169–2174 (2007).

    Article  CAS  Google Scholar 

  4. Huang, G. et al. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc. Natl. Acad. Sci. USA 103, 12813–12818 (2006).

    Article  CAS  Google Scholar 

  5. Srikantha, T. et al. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot. Cell 5, 1674–1687 (2006).

    Article  CAS  Google Scholar 

  6. Zordan, R.E., Galgoczy, D.J. & Johnson, A.D. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103, 12807–12812 (2006).

    Article  CAS  Google Scholar 

  7. Miller, M.G. & Johnson, A.D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302 (2002).

    Article  CAS  Google Scholar 

  8. Edmond, M.B. et al. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239–244 (1999).

    Article  CAS  Google Scholar 

  9. Zaoutis, T.E. et al. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin. Infect. Dis. 41, 1232–1239 (2005).

    Article  Google Scholar 

  10. Odds, F.C. et al. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J. Clin. Microbiol. 44, 3647–3658 (2006).

    Article  CAS  Google Scholar 

  11. Chen, C., Pande, K., French, S.D., Tuch, B.B. & Noble, S.M. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10, 118–135 (2011).

    Article  CAS  Google Scholar 

  12. Pierce, J.V. & Kumamoto, C.A. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio 3, e00117–12 (2012).

    Article  CAS  Google Scholar 

  13. Zordan, R.E., Miller, M.G., Galgoczy, D.J., Tuch, B.B. & Johnson, A.D. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 5, e256 (2007).

    Article  Google Scholar 

  14. Noble, S.M. & Johnson, A.D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 4, 298–309 (2005).

    Article  CAS  Google Scholar 

  15. Camilli, A., Beattie, D.T. & Mekalanos, J.J. Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA 91, 2634–2638 (1994).

    Article  CAS  Google Scholar 

  16. Staib, P. et al. Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol. Microbiol. 32, 533–546 (1999).

    Article  CAS  Google Scholar 

  17. Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262 (1996).

    Article  CAS  Google Scholar 

  18. Slutsky, B. et al. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169, 189–197 (1987).

    Article  CAS  Google Scholar 

  19. Bennett, R.J. & Johnson, A.D. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59, 233–255 (2005).

    Article  CAS  Google Scholar 

  20. Wilson, M. The gastrointestinal tract and its indigenous microbiota. in Microbial Inhabitants of Humans 251–317 (University of Cambridge Press, Cambridge, 2005).

  21. Naglik, J.R., Challacombe, S.J. & Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428 (2003).

    Article  CAS  Google Scholar 

  22. Jackson, B.E., Wilhelmus, K.R. & Hube, B. The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest. Ophthalmol. Vis. Sci. 48, 3559–3565 (2007).

    Article  Google Scholar 

  23. Wong, J.M. & Jenkins, D.J. Carbohydrate digestibility and metabolic effects. J. Nutr. 137, 2539S–2546S (2007).

    Article  CAS  Google Scholar 

  24. Goodman, M.J., Kent, P.W. & Truelove, S.C. Glucosamine synthetase activity of the colonic mucosa in ulcerative colitis and Crohn's disease. Gut 18, 219–228 (1977).

    Article  CAS  Google Scholar 

  25. Hill, D.A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).

    Article  CAS  Google Scholar 

  26. Miret, S., Simpson, R.J. & McKie, A.T. Physiology and molecular biology of dietary iron absorption. Annu. Rev. Nutr. 23, 283–301 (2003).

    Article  CAS  Google Scholar 

  27. Pierre, J.L., Fontecave, M. & Crichton, R.R. Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15, 341–346 (2002).

    Article  CAS  Google Scholar 

  28. Lan, C.Y. et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99, 14907–14912 (2002).

    Article  CAS  Google Scholar 

  29. Lockhart, S.R., Wu, W., Radke, J.B., Zhao, R. & Soll, D.R. Increased virulence and competitive advantage of a/α over a/a or α/α offspring conserves the mating system of Candida albicans. Genetics 169, 1883–1890 (2005).

    Article  CAS  Google Scholar 

  30. Xie, J. et al. White-opaque switching in natural MTL a/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS Biol. 11, e1001525 (2013).

    Article  CAS  Google Scholar 

  31. Legrand, M. et al. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52, 1451–1462 (2004).

    Article  CAS  Google Scholar 

  32. Lockhart, S.R. et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162, 737–745 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gillum, A.M., Tsay, E.Y. & Kirsch, D.R. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179–182 (1984).

    Article  CAS  Google Scholar 

  34. Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    Article  CAS  Google Scholar 

  35. Mitrovich, Q.M., Tuch, B.B., Guthrie, C. & Johnson, A.D. Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res. 17, 492–502 (2007).

    Article  CAS  Google Scholar 

  36. Reuss, O., Vik, A., Kolter, R. & Morschhauser, J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127 (2004).

    Article  CAS  Google Scholar 

  37. Guthrie, C. & Fink, C.G. Guide to Yeast Genetics and Molecular and Cell Biology (Academic Press, San Diego, 2002).

  38. Lemoine, S., Combes, F., Servant, N. & Le Crom, S. Goulphar: rapid access and expertise for standard two-color microarray normalization methods. BMC Bioinformatics 7, 467 (2006).

    Article  Google Scholar 

  39. Townsend, J.P. & Hartl, D.L. Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biol. 3, RESEARCH0071 (2002).

    Article  Google Scholar 

  40. Lin, C.H., Choi, A. & Bennett, R.J. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species. Mol. Biol. Cell 22, 4918–4930 (2011).

    Article  CAS  Google Scholar 

  41. Inglis, D.O. et al. The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res. 40, D667–D674 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Bennett for providing protocols for C. albicans scanning electron microscopy and response to mating pheromone and to A. Johnson (University of California at San Francisco) for strains and antibodies to α-Wor1. We thank S. Beyhan and M. Voorhies for guidance with BAGEL software. M. Mwangi assisted with the preparation of images of GUT and opaque cells and with colony PCR. J. Cox, H. Madhani, Q. Mitrovich and A. Sil provided helpful comments on the manuscript. This work was supported by US National Institutes of Health (NIH) grant R21AI099659-01, a University of California at San Francisco (UCSF) Program for Breakthrough Biomedical Research award, a Burroughs Wellcome Fund CABS (Career Awards in the Biomedical Sciences) award and a Pew Foundation scholarship.

Author information

Authors and Affiliations

Authors

Contributions

K.P. identified C. albicans mutants with altered commensal fitness, characterized the white-GUT switch and analyzed mating and pheromone response. C.C. performed strain construction, expression profiling and scanning electron microscopy. S.M.N. oversaw the work and wrote the manuscript.

Corresponding author

Correspondence to Suzanne M Noble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1, 2 and 4–7 (PDF 3813 kb)

Supplementary table 3

Transcriptome analysis of GUT, white and opaque cells (XLSX 4305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pande, K., Chen, C. & Noble, S. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet 45, 1088–1091 (2013). https://doi.org/10.1038/ng.2710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2710

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology