Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3

Subjects

Abstract

Gene expression profiles and chromosome 3 copy number divide uveal melanomas into two distinct classes correlating with prognosis1,2,3. Using exome sequencing, we identified recurrent somatic mutations in EIF1AX and SF3B1, specifically occurring in uveal melanomas with disomy 3, which rarely metastasize. Targeted resequencing showed that 24 of 31 tumors with disomy 3 (77%) had mutations in either EIF1AX (15; 48%) or SF3B1 (9; 29%). Mutations were infrequent (2/35; 5.7%) in uveal melanomas with monosomy 3, which are associated with poor prognosis2. Resequencing of 13 uveal melanomas with partial monosomy 3 identified 8 tumors with a mutation in either SF3B1 (7; 54%) or EIF1AX (1; 8%). All EIF1AX mutations caused in-frame changes affecting the N terminus of the protein, whereas 17 of 19 SF3B1 mutations encoded an alteration of Arg625. Resequencing of ten uveal melanomas with disomy 3 that developed metastases identified SF3B1 mutations in three tumors, none of which targeted Arg625.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Exome sequencing of uveal melanomas.
Figure 2: Results of targeted resequencing.
Figure 3: Alignment of EIF1AX amino acid sequences from 19 uveal melanomas with an EIF1AX mutation.

Accession codes

Primary accessions

European Nucleotide Archive

Ensembl

References

  1. Onken, M.D., Worley, L.A., Ehlers, J.P. & Harbour, J.W. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 64, 7205–7209 (2004).

    CAS  Article  Google Scholar 

  2. Prescher, G. et al. Prognostic implications of monosomy 3 in uveal melanoma. Lancet 347, 1222–1225 (1996).

    CAS  Article  Google Scholar 

  3. Tschentscher, F. et al. Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. Cancer Res. 63, 2578–2584 (2003).

    CAS  PubMed  Google Scholar 

  4. Damato, B., Dopierala, J.A. & Coupland, S.E. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin. Cancer Res. 16, 6083–6092 (2010).

    CAS  Article  Google Scholar 

  5. Thomas, S. et al. Prognostic significance of chromosome 3 alterations determined by microsatellite analysis in uveal melanoma: a long-term follow-up study. Br. J. Cancer 106, 1171–1176 (2012).

    CAS  Article  Google Scholar 

  6. Abdel-Rahman, M.H. et al. Frequency, molecular pathology and potential clinical significance of partial chromosome 3 aberrations in uveal melanoma. Mod. Pathol. 24, 954–962 (2011).

    Article  Google Scholar 

  7. Van Raamsdonk, C.D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009).

    CAS  Article  Google Scholar 

  8. Van Raamsdonk, C.D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    CAS  Article  Google Scholar 

  9. Bauer, J. et al. Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma. Br. J. Cancer 101, 813–815 (2009).

    CAS  Article  Google Scholar 

  10. Harbour, J.W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    CAS  Article  Google Scholar 

  11. Harbour, J.W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    CAS  Article  Google Scholar 

  12. Forbes, S.A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet. Chapter 10 Unit 10.11 (2008).

  13. Rossi, D. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118, 6904–6908 (2011).

    CAS  Article  Google Scholar 

  14. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  Article  Google Scholar 

  15. Hahn, C.N. & Scott, H.S. Spliceosome mutations in hematopoietic malignancies. Nat. Genet. 44, 9–10 (2012).

    CAS  Article  Google Scholar 

  16. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    CAS  Article  Google Scholar 

  17. Folco, E.G., Coil, K.E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point–binding region. Genes Dev. 25, 440–444 (2011).

    CAS  Article  Google Scholar 

  18. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    CAS  Article  Google Scholar 

  19. Battiste, J.L., Pestova, T.V., Hellen, C.U. & Wagner, G. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5, 109–119 (2000).

    CAS  Article  Google Scholar 

  20. Chaudhuri, J., Si, K. & Maitra, U. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J. Biol. Chem. 272, 7883–7891 (1997).

    CAS  Article  Google Scholar 

  21. Fekete, C.A. et al. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 24, 3588–3601 (2005).

    CAS  Article  Google Scholar 

  22. Maag, D. & Lorsch, J.R. Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J. Mol. Biol. 330, 917–924 (2003).

    CAS  Article  Google Scholar 

  23. Fekete, C.A. et al. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26, 1602–1614 (2007).

    CAS  Article  Google Scholar 

  24. Olsen, D.S. et al. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22, 193–204 (2003).

    CAS  Article  Google Scholar 

  25. Hinnebusch, A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450 (2005).

    CAS  Article  Google Scholar 

  26. Baird, T.D. & Wek, R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv. Nutr. 3, 307–321 (2012).

    CAS  Article  Google Scholar 

  27. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  Article  Google Scholar 

  28. Lee, S., Liu, B., Huang, S.X., Shen, B. & Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl. Acad. Sci. USA 109, E2424–E2432 (2012).

    CAS  Article  Google Scholar 

  29. McLean, I.W., Foster, W.D. & Zimmerman, L.E. Uveal melanoma: location, size, cell type, and enucleation as risk factors in metastasis. Hum. Pathol. 13, 123–132 (1982).

    CAS  Article  Google Scholar 

  30. Tschentscher, F., Prescher, G., Zeschnigk, M., Horsthemke, B. & Lohmann, D.R. Identification of chromosomes 3, 6, and 8 aberrations in uveal melanoma by microsatellite analysis in comparison to comparative genomic hybridization. Cancer Genet. Cytogenet. 122, 13–17 (2000).

    CAS  Article  Google Scholar 

  31. Church, D.M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011).

    CAS  Article  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  33. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  Article  Google Scholar 

  34. Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Klutz and D. Falkenstein for technical assistance and H.-J. Lüdecke for elaborate discussion. This work was supported by the Deutsche Krebshilfe (DKF, 108612), the Mercator Research Center Ruhr (Pr-2010-0016) and the Wilhelm Sander Stiftung (2012.006.1) and by the Intramural Research Program of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. designed and supervised the study, and wrote the manuscript. C.M. and N.B. provided the samples and clinical data of the affected individuals. J.v.d.N. performed immunohistochemistry. L.K.-H. performed next-generation sequencing. M.M. and S.R. performed bioinformatic analysis of exome sequencing data. L.M. performed exome capture of tumor and blood samples. C.M. and P.T. performed Sanger resequencing and analysis of the sequencing data. B.H. and D.R.L. participated in the design of the study and revised the manuscript. D.R.L. performed statistical analysis. A.G.H. provided background on eIF1A function.

Corresponding author

Correspondence to Michael Zeschnigk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–5 (PDF 964 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, M., Maßhöfer, L., Temming, P. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45, 933–936 (2013). https://doi.org/10.1038/ng.2674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2674

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing