Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes

Abstract

Hydrogen evolution on platinum is a key reaction for electrocatalysis and sustainable energy storage, yet its pH-dependent kinetics are not fully understood. Here we present a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range. Electrochemical measurements show that hydrogen adsorption and hydrogen evolution are both slow in alkaline media, consistent with the observation of a shift in the rate-determining step for hydrogen evolution. Adding nickel to the Pt(111) surface lowers the barrier for hydrogen adsorption in alkaline solutions and thereby enhances the hydrogen evolution rate. We explain these observations with a model that highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field. The model is supported by laser-induced temperature-jump measurements. Our model sheds light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of cyclic voltammetries for Pt(111) at various pH.
Figure 2: Impedance spectroscopy of the kinetics of H adsorption on Pt(111) at various pH.
Figure 3: Kinetics of hydrogen evolution and hydrogen adsorption on Pt(111) in the presence of Ni(OH)2.
Figure 4: Cyclic voltammetry and laser-induced temperature-jump measurements at pH 10.
Figure 5: Cyclic voltammetry and laser-induced temperature-jump measurements at pH 13.

References

  1. 1

    Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

  2. 2

    Bockris, J. O. M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int. J. Hydrog. Energy 27, 731–740 (2002).

  3. 3

    Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

  4. 4

    Ni, M., Leung, M.K. H., Leung, D.Y. C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007).

  5. 5

    Barnhart, C. J. & Benson, S. M. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ. Sci. 6, 1083–1092 (2013).

  6. 6

    Hashemi, S. M. H., Modestino, M. A. & Psaltis, D. A membrane-less electrolyzer for hydrogen production across the pH scale. Energy Environ. Sci. 8, 2003–2009 (2015).

  7. 7

    Huang, Q., Ye, Z. & Xiao, X. Recent progress in photocathodes for hydrogen evolution. J. Mater. Chem. A 3, 15824–15837 (2015).

  8. 8

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

  9. 9

    Calle-Vallejo, F., Díaz-Morales, O. A., Kolb, M. J. & Koper, M. T. M. Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 5, 869–873 (2015).

  10. 10

    Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. M. & Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis 5, 5380–5387 (2015).

  11. 11

    Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

  12. 12

    Bockris, J. O. M. & Potter, E. C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99, 169–186 (1952).

  13. 13

    Conway, B. E. & Bai, L. State of adsorption and coverage by overpotential-deposited H in the H2 evolution reaction at Au and Pt. Electrochim. Acta 31, 1013–1024 (1986).

  14. 14

    Schouten, K. J. P., van der Niet, M. J. T. C. & Koper, M. T. M. Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media. Phys. Chem. Chem. Phys. 12, 15217–15224 (2010).

  15. 15

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

  16. 16

    Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012).

  17. 17

    Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

  18. 18

    Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

  19. 19

    Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

  20. 20

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

  21. 21

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

  22. 22

    Laursen, A. B. et al. Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J. Chem. Educ. 89, 1595–1599 (2012).

  23. 23

    Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

  24. 24

    Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

  25. 25

    van der Niet, M. J. T. C., Garcia-Araez, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113 (2013).

  26. 26

    Morin, S., Dumont, H. & Conway, B. E. Evaluation of the effect of two-dimensional geometry of pt single-crystal faces on the kinetics of upd of h using impedance spectroscopy. J. Electroanal. Chem. 412, 39–52 (1996).

  27. 27

    Gisbert, R., García, G. & Koper, M. T. M. Adsorption of phosphate species on poly-oriented Pt and Pt(1 1 1) electrodes over a wide range of pH. Electrochim. Acta 55, 7961–7968 (2010).

  28. 28

    Oelgeklaus, R., Rose, J. & Baltruschat, H. On the rate of hydrogen and iodine adsorption on polycrystalline Pt and Pt(111). J. Electroanal. Chem. 376, 127–133 (1994).

  29. 29

    Schuldiner, S. Hydrogen overvoltage on bright platinum: II. pH and salt effects in acid, neutral, and alkaline solutions. J. Electrochem. Soc. 101, 426–432 (1954).

  30. 30

    Conway, B. E. & Bai, L. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. Interfacial Electrochem. 198, 149–175 (1986).

  31. 31

    Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

  32. 32

    Seto, K., Iannelli, A., Love, B. & Lipkowski, J. The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. J. Electroanal. Chem. Interfacial Electrochem. 226, 351–360 (1987).

  33. 33

    Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

  34. 34

    Kita, H., Ye, S. & Gao, Y. Mass transfer effect in hydrogen evolution reaction on Pt single-crystal electrodes in acid solution. J. Electroanal. Chem. 334, 351–357 (1992).

  35. 35

    Climent, V., García-Araez, N., Herrero, E. & Feliu, J. Potential of zero total charge of platinum single crystals: a local approach to stepped surfaces vicinal to Pt(111). Russ. J. Electrochem. 42, 1145–1160 (2006).

  36. 36

    Garcia-Araez, N., Climent, V., Herrero, E., Feliu, J. M. & Lipkowski, J. Thermodynamic approach to the double layer capacity of a Pt(1 1 1) electrode in perchloric acid solutions. Electrochim. Acta 51, 3787–3793 (2006).

  37. 37

    Rizo, R., Sitta, E., Herrero, E., Climent, V. & Feliu, J. M. Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. Electrochim. Acta 162, 138–145 (2015).

  38. 38

    Cuesta, A. Measurement of the surface charge density of CO-saturated Pt(1 1 1) electrodes as a function of potential: the potential of zero charge of Pt(1 1 1). Surface Sci. 572, 11–22 (2004).

  39. 39

    Sebastián, P., Sandoval, A. P., Climent, V. & Feliu, J. M. Study of the interface Pt(111)/ [Emmim][NTf2] using laser-induced temperature jump experiments. Electrochem. Commun. 55, 39–42 (2015).

  40. 40

    Garcia-Araez, N., Climent, V. & Feliu, J. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), as inferred from laser-pulsed experiments. Electrostatic and chemical effects. J. Phys. Chem. C 113, 9290–9304 (2009).

  41. 41

    Climent, V., Coles, B. A. & Compton, R. G. Coulostatic potential transients induced by laser heating of a Pt(111) single-crystal electrode in aqueous acid solutions. Rate of hydrogen adsorption and potential of maximum entropy. J. Phys. Chem. B 106, 5988–5996 (2002).

  42. 42

    Climent, V., Coles, B. A. & Compton, R. G. Laser-induced potential transients on a Au(111) single-crystal electrode. Determination of the potential of maximum entropy of double-layer formation. J. Phys. Chem. B 106, 5258–5265 (2002).

  43. 43

    García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).

  44. 44

    Pecina, O. & Schmickler, W. A model for electrochemical proton-transfer reactions. Chem. Phys. 228, 265–277 (1998).

  45. 45

    Rossmeisl, J., Chan, K., Skúlason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).

  46. 46

    Rossmeisl, J., Chan, K., Ahmed, R., Tripkovic, V. & Bjorketun, M. E. pH in atomic scale simulations of electrochemical interfaces. Phys. Chem. Chem. Phys. 15, 10321–10325 (2013).

  47. 47

    Climent, V., Garcia-Araez, N., Compton, R. G. & Feliu, J. M. Effect of deposited bismuth on the potential of maximum entropy of Pt(111) single-crystal electrodes. J. Phys. Chem. B 110, 21092–21100 (2006).

Download references

Acknowledgements

This work was supported by a TOP grant from the Netherlands Organization for Scientific Research (NWO). Support from MINECO (Spain) through project CTQ2013-44083-P is acknowledged.

Author information

I.L.-Y., V.C., J.M.F. and M.T.M.K. designed the experiments. I.L.-Y. and W.D.Z.W. carried out the electrochemical experiments. I.L.-Y. and P.S.-P. carried out the laser-induced temperature-jump experiments. I.L.-Y. and M.T.M.K. co-wrote the manuscript and all authors edited the manuscript.

Correspondence to Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–7. (PDF 318 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ledezma-Yanez, I., Wallace, W., Sebastián-Pascual, P. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy 2, 17031 (2017). https://doi.org/10.1038/nenergy.2017.31

Download citation

Further reading