Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

Abstract

Low-grade heat from sources below 100 C offers a vast quantity of energy. The ability to extract this energy, however, is limited with existing technologies as they are not well-suited to harvest energy from sources with variable heat output or with a small temperature difference between the source and the environment. Here, we present a process for extracting energy from low-grade heat sources utilizing hydrophobic, nanoporous membranes that trap air within their pores when submerged in a liquid. By driving a thermo-osmotic vapour flux across the membrane from a hot reservoir to a pressurized cold reservoir, heat energy can be converted to mechanical work. We demonstrate operation of air-trapping membranes under hydraulic pressures up to 13 bar, show that power densities as high as 3.53 ± 0.29 W m−2 are achievable with a 60 C heat source and a 20 C heat sink, and estimate the efficiency of a full-scale system. The results demonstrate a promising process to harvest energy from low-temperature differences (<40 C) and fluctuating heat sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Working principle of the thermo-osmotic energy conversion system.
Figure 2: Demonstration of power generation using a vapour-gap membrane.
Figure 3: Water flux across a membrane driven by a temperature gradient.
Figure 4: Efficiency of a closed-loop system with heat recovery.

References

  1. 1

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  Google Scholar 

  2. 2

    Chen, H., Goswami, D. Y. & Stefanakos, E. K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 14, 3059–3067 (2010).

    Article  Google Scholar 

  3. 3

    Gingerich, D. B. & Mauter, M. S. Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49, 8297–8306 (2015).

    Article  Google Scholar 

  4. 4

    Hentricks, T. & Choate, W. T. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery (U.S. Department of Energy, 2006).

    Google Scholar 

  5. 5

    Blackwell, D. et al. Temperature-at-depth maps for the conterminous U.S. and geothermal resource estimates. Geotherm. Resour. Counc. Trans. 35, 1545–1550 (2011).

    Google Scholar 

  6. 6

    Mills, D. Advances in solar thermal electricity technology. Sol. Energy 76, 19–31 (2004).

    Article  Google Scholar 

  7. 7

    Barbier, E. Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 6, 3–65 (2002).

    Article  Google Scholar 

  8. 8

    Tchanche, B. F., Lambrinos, G., Frangoudakis, A. & Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew. Sustain. Energy Rev. 15, 3963–3979 (2011).

    Article  Google Scholar 

  9. 9

    Hung, T. C., Shai, T. Y. & Wang, S. K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 22, 661–667 (1997).

    Article  Google Scholar 

  10. 10

    Vélez, F. et al. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sustain. Energy Rev. 16, 4175–4189 (2012).

    Article  Google Scholar 

  11. 11

    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  Google Scholar 

  12. 12

    Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012).

    Article  Google Scholar 

  13. 13

    Zhang, F., Liu, J., Yang, W. & Logan, B. E. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Environ. Sci. 8, 343–349 (2015).

    Article  Google Scholar 

  14. 14

    Zhang, F., LaBarge, N., Yang, W., Liu, J. & Logan, B. E. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures. ChemSusChem 8, 1043–1048 (2015).

    Article  Google Scholar 

  15. 15

    Peljo, P., Lloyd, D., Doan, N., Majaneva, M. & Kontturi, K. Towards a thermally regenerative all-copper redox flow battery. Phys. Chem. Chem. Phys. 16, 2831–2835 (2014).

    Article  Google Scholar 

  16. 16

    Hu, R. et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10, 838–846 (2010).

    Article  Google Scholar 

  17. 17

    Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nature Commun. 5, 3942 (2014).

    Article  Google Scholar 

  18. 18

    Abraham, T. J., MacFarlane, D. R. & Pringle, J. M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6, 2639–2645 (2013).

    Article  Google Scholar 

  19. 19

    Bocquet, L. Nanofluidics: bubbles as osmotic membranes. Nature Nanotech. 9, 249–251 (2014).

    Article  Google Scholar 

  20. 20

    Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    Article  Google Scholar 

  21. 21

    Mengual, J. I., Ortiz de Zárate, J., Peña, L. & Velázquez, A. Osmotic distillation through porous hydrophobic membranes. J. Membr. Sci. 82, 129–140 (1993).

    Article  Google Scholar 

  22. 22

    Lee, J., Laoui, T. & Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nature Nanotech. 9, 317–323 (2014).

    Article  Google Scholar 

  23. 23

    El-Bourawi, M. S., Ding, Z., Ma, R. & Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 285, 4–29 (2006).

    Article  Google Scholar 

  24. 24

    Cath, T. Y., Adams, V. D. & Childress, A. E. Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. J. Membr. Sci. 228, 5–16 (2004).

    Article  Google Scholar 

  25. 25

    Dariel, M. & Kedem, O. Thermoosmosis in semipermeable membranes. J. Phys. Chem. 79, 336–342 (1975).

    Article  Google Scholar 

  26. 26

    Mengual, J. I. & Aguilar, J. Thermoosmosis of water through cellulose acetate membranes. J. Membr. Sci. 4, 209–219 (1978).

    Article  Google Scholar 

  27. 27

    Tasaka, M., Mizuta, T. & Sekiguchi, O. Mass transfer through polymer membranes due to a temperature gradient. J. Membr. Sci. 54, 191–204 (1990).

    Article  Google Scholar 

  28. 28

    Kim, S. & Mench, M. M. Investigation of temperature-driven water transport in polymer electrolyte fuel cell: thermo-osmosis in membranes. J. Membr. Sci. 328, 113–120 (2009).

    Article  Google Scholar 

  29. 29

    Adamson, A. W. & Gast, A. P. Physical Chemistry of Surfaces (John Wiley, 1997).

    Google Scholar 

  30. 30

    Lee, J. & Karnik, R. Desalination of water by vapor-phase transport through hydrophobic nanopores. J. Appl. Phys. 108, 044315 (2010).

    Article  Google Scholar 

  31. 31

    Schofield, R. W., Fane, A. G. & Fell, C. J. D. Heat and mass transfer in membrane distillation. J. Membr. Sci. 33, 299–313 (1987).

    Article  Google Scholar 

  32. 32

    Khayet, M. Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164, 56–88 (2011).

    Article  Google Scholar 

  33. 33

    Cusick, R. D., Kim, Y. & Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335, 1474–1477 (2012).

    Article  Google Scholar 

  34. 34

    Ramon, G. Z., Feinberg, B. J. & Hoek, E. M. V. Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4, 4423–4434 (2011).

    Article  Google Scholar 

  35. 35

    Helfer, F., Lemckert, C. & Anissimov, Y. G. Osmotic power with pressure retarded osmosis: theory, performance and trends—a review. J. Membr. Sci. 453, 337–358 (2014).

    Article  Google Scholar 

  36. 36

    Carman, P. C. Flow of Gases Through Porous Media (Academic, 1956).

    Google Scholar 

  37. 37

    Kast, W. & Hohenthanner, C. R. Mass transfer within the gas-phase of porous media. Int. J. Heat Mass Transfer 43, 807–823 (2000).

    Article  Google Scholar 

  38. 38

    Matsuura, T. Synthetic Membranes and Membrane Separation Processes (CRC Press, 1994).

    Google Scholar 

  39. 39

    García-Payo, M., Izquierdo-Gil, M. & Fernández-Pineda, C. Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions. J. Colloid Interface Sci. 230, 420–431 (2000).

    Article  Google Scholar 

  40. 40

    Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498–515 (2014).

    Article  Google Scholar 

  41. 41

    Lin, S., Yip, N. Y., Cath, T. Y., Osuji, C. O. & Elimelech, M. Hybrid pressure retarded osmosis—membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. Environ. Sci. Technol. 48, 5306–5313 (2014).

    Article  Google Scholar 

  42. 42

    McGinnis, R. L., McCutcheon, J. R. & Elimelech, M. A novel ammonia–carbon dioxide osmotic heat engine for power generation. J. Membr. Sci. 305, 13–19 (2007).

    Article  Google Scholar 

  43. 43

    Straub, A. P., Osuji, C. O., Cath, T. Y. & Elimelech, M. Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures. Environ. Sci. Technol. 49, 12551–12559 (2015).

    Article  Google Scholar 

  44. 44

    Qtaishat, M., Matsuura, T., Kruczek, B. & Khayet, A. Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219, 272–292 (2008).

    Article  Google Scholar 

  45. 45

    Phattaranawik, J., Jiraratananon, R. & Fane, A. G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci. 212, 177–193 (2003).

    Article  Google Scholar 

  46. 46

    Khayet, M. & Matsuura, T. Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind. Eng. Chem. Res. 40, 5710–5718 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation Graduate Research Fellowship DGE-1122492 awarded to A.P.S.

Author information

Affiliations

Authors

Contributions

A.P.S., N.Y.Y., S.L., J.L. and M.E. participated in developing the process and designing the experiments. A.P.S. performed the experiments and analysed the data. A.P.S. and S.L. conducted the system modelling. A.P.S. and M.E. co-wrote the paper. All authors contributed to data analysis, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Supplementary Figures 1–23, Supplementary Tables 1, Supplementary References. (PDF 1081 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Straub, A., Yip, N., Lin, S. et al. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat Energy 1, 16090 (2016). https://doi.org/10.1038/nenergy.2016.90

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing