Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable moisture energy

Abstract

Harvesting energy from the ambient is a promising approach to fulfil decentralized energy demands and facilitate the transition to low-carbon economy. Moisture-sorption-based energy harvesting (MSEH) is a promising strategy for obtaining heat, cold and electricity from ubiquitous moisture anywhere and anytime. Advances in water-sorption materials have promoted the development of sustainable moisture energy. However, MSEH technology faces the challenges of low-energy productivity and limited recognition of its working mechanisms and thermodynamic analysis. We centre this Perspective article around an in-depth understanding of the underlying mechanisms and thermodynamic limitations of sustainable moisture energy. We first introduce the working principles of MSEH for heat, cold and electricity generation, and summarize recent progress in water sorbents. We then discuss thermodynamic limitations and evaluate global potential for sustainable moisture energy. We outline future challenges of water-sorption kinetics and propose technical directions for accelerating water sorption-desorption with ordered cross-scale energy transfer and mass transport. Finally, we offer an overview of future research areas for water sorbents with higher water uptake, tunable water affinity and faster water sorption for next-generation high-performance MSEH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics and operating principles of moisture-sorption-based energy harvesting for heating, cooling and electricity generation.
Fig. 2: Water-sorption capacity of sorbents and power density of moisture-sorption-based energy harvesting.
Fig. 3: Thermodynamics and energy potential of moisture-sorption-based energy harvesting.
Fig. 4: Challenges and opportunities of sorption kinetics.
Fig. 5: Perspectives on designing next-generation sorbents and future practical applications.

Similar content being viewed by others

References

  1. Shen, D. et al. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32, 2003722 (2020).

    Article  Google Scholar 

  2. Wang, X. et al. Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51, 4902–4927 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, H. et al. Hydrovoltaic electricity generator with hygroscopic materials: a review and new perspective. Adv. Mater. https://doi.org/10.1002/adma.202301080 (2023).

  4. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Fang, S., Li, J., Xu, Y., Shen, C. & Guo, W. Evaporating potential. Joule 6, 690–701 (2022).

    Article  Google Scholar 

  6. Li, R., Wang, W., Shi, Y., Wang, A. C. & Wang, P. Advanced material design and engineering for water‐based evaporative cooling. Adv. Mater. https://doi.org/10.1002/adma.202209460 (2023).

  7. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Shi, W., Guan, W., Lei, C. & Yu, G. Sorbents for atmospheric water harvesting: from design principles to applications. Angew. Chem. Int. Ed. 61, e2022112 (2022).

    Article  Google Scholar 

  9. Xu, W. & Yaghi, O. M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woods, J. et al. Humidity’s impact on greenhouse gas emissions from air conditioning. Joule 6, 726–741 (2022).

    Article  CAS  Google Scholar 

  11. Poredoš, P., Shan, H. & Wang, R. Dehumidification with solid hygroscopic sorbents for low-carbon air conditioning. Joule 6, 1390–1393 (2022).

    Article  Google Scholar 

  12. Tang, J. et al. Circadian humidity fluctuation induced capillary flow for sustainable mobile energy. Nat. Commun. 13, 1291 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Liu, X. et al. Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Liu, X., Gao, H., Sun, L. & Yao, J. Generic Air-gen effect in nanoporous materials for sustainable energy harvesting from air humidity. Adv. Mater. https://doi.org/10.1002/adma.202300748 (2023).

  15. Zeng, Z. Y., Zhao, B. C. & Wang, R. Z. Passive day and night heating for zero energy buildings with solar-based adsorption thermal battery. Cell Rep. Phys. Sci. 2, 100578 (2021).

    Article  CAS  Google Scholar 

  16. Zhang, Y., Nandakumar, D. K. & Tan, S. C. Digestion of ambient humidity for energy generation. Joule 4, 2532–2536 (2020).

    Article  Google Scholar 

  17. IRENA, IEA & REN21. Renewable Energy Policies in a Time of Transition: Heating and Cooling (IRENA, 2020).

  18. Yan, H., Liu, Z. & Qi, R. A review of humidity gradient-based power generator: devices, materials and mechanisms. Nano Energy 101, 107591 (2022).

    Article  CAS  Google Scholar 

  19. Guan, P. et al. Recent development of moisture-enabled-electric nanogenerators. Small 18, 2204603 (2022).

    Article  CAS  Google Scholar 

  20. Xu, T., Ding, X., Cheng, H., Han, G. & Qu, L. Moisture enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. https://doi.org/10.1002/adma.202209661 (2023).

  21. Tan, J. et al. Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. https://doi.org/10.1002/adma.202211165 (2023).

  22. Dubinin, M. M. in Progress in Surface and Membrane Science (eds Cadenhead, D. A. et al.) 1–70 (Academic Press Inc., 1975).

  23. Zhang, Y. & Wang, R. Sorption thermal energy storage: concept, process, applications and perspectives. Energy Storage Mater. 27, 352–369 (2020).

    Article  Google Scholar 

  24. Zeng, Z., Zhao, B. & Wang, R. Water based adsorption thermal battery: sorption mechanisms and applications. Energy Storage Mater. 54, 794–821 (2023).

    Article  Google Scholar 

  25. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  ADS  Google Scholar 

  26. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, J. X., Li, T. X., Chao, J. W., Yan, T. S. & Wang, R. Z. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes. Energy 185, 1131–1142 (2019).

    Article  CAS  Google Scholar 

  29. Zhang, Y., Dong, H., Wang, R. & Feng, P. Air humidity assisted sorption thermal battery governed by reaction wave model. Energy Storage Mater. 27, 9–16 (2020).

    Article  Google Scholar 

  30. Li, J. et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8, eabq0411 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Xu, L., Sun, D. W., Tian, Y., Fan, T. & Zhu, Z. Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 457, 141231 (2023).

    Article  CAS  Google Scholar 

  32. Cavusoglu, A. H., Chen, X., Gentine, P. & Sahin, O. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Lu, W., Ong, W. L. & Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 11, 12456–12481 (2023).

    Article  CAS  Google Scholar 

  34. Li, M. et al. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019).

    Article  Google Scholar 

  35. Behabtu, N. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182–186 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9, 137–141 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Yang, M. et al. Fabrication of moisture-responsive crystalline smart materials for water harvesting and electricity transduction. J. Am. Chem. Soc. 143, 7732–7739 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Ye, M., Cheng, H., Gao, J., Li, C. & Qu, L. A respiration-detective graphene oxide/lithium battery. J. Mater. Chem. A 4, 19154–19159 (2016).

    Article  CAS  Google Scholar 

  39. Nandakumar, D. K., Vaghasiya, J. V., Yang, L., Zhang, Y. & Tan, S. C. A solar cell that breathes in moisture for energy generation. Nano Energy 68, 104263 (2020).

    Article  CAS  Google Scholar 

  40. Zhang, Y. et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 13, 3484 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Xie, P., Rong, M. Z. & Zhang, M. Q. Moisture battery formed by direct contact of magnesium with foamed polyaniline. Angew. Chem. Int. Ed. 55, 1805–1809 (2016).

    Article  CAS  Google Scholar 

  42. Long, Y. et al. Moisture-induced autonomous surface potential oscillations for energy harvesting. Nat. Commun. 12, 5287 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  CAS  ADS  Google Scholar 

  44. Canossa, S. et al. System of sequences in multivariate reticular structures. Nat. Rev. Mater. 8, 331–340 (2022).

    Article  ADS  Google Scholar 

  45. Song, Y., Sun, Q., Aguila, B. & Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 6, 1801410 (2019).

    Article  Google Scholar 

  46. Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Ristić, A., Logar, N. Z., Henninger, S. K. & Kaučič, V. The performance of small-pore microporous aluminophosphates in low-temperature solar energy storage: the structure–property relationship. Adv. Funct. Mater. 22, 1952–1957 (2012).

    Article  Google Scholar 

  48. Liu, Z. et al. Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate. Nat. Commun. 13, 193 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Krajnc, A. et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv. Energy Mater. 7, 1601815 (2017).

    Article  Google Scholar 

  50. Guo, Y. et al. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120, 7642–7707 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

    Article  CAS  Google Scholar 

  52. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Xu, J. et al. Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 132, 5240–5248 (2020).

    Article  ADS  Google Scholar 

  54. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67, 104255 (2020).

    Article  CAS  Google Scholar 

  55. Aleid, S. et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 4, 511–520 (2022).

    Article  CAS  Google Scholar 

  56. Lei, C. et al. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61, e202200271 (2022).

    Article  CAS  Google Scholar 

  57. Guan, W., Lei, C., Guo, Y., Shi, W. & Yu, G. Hygroscopic-microgels-enabled rapid water extraction from arid air. Adv. Mater. https://doi.org/10.1002/adma.202207786 (2022).

  58. Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lv, D. et al. Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy Environ. Sci. 15, 2601–2609 (2022).

    Article  CAS  Google Scholar 

  60. Grekova, A. D. et al. New composite sorbents of water and methanol ‘salt in anodic alumina’: evaluation for adsorption heat transformation. Energy 106, 231–239 (2016).

    Article  CAS  Google Scholar 

  61. Lewis, G. N., Randall, M., Pitzer, K. S. & Brewer, L. Thermodynamics (Dover Publications, 2020).

  62. Wang, H. et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 16, 811–819 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Hanikel, N. et al. MOF linker extension strategy for enhanced atmospheric water harvesting. ACS Cent. Sci. 9, 551–557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao, H. et al. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 32, 1905875 (2020).

    Article  CAS  Google Scholar 

  65. Waller, P. J. et al. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 138, 15519–15522 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Rieth, A. J. et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks. J. Am. Chem. Soc. 141, 13858–13866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Szargut, J., Morris, D. R. & Steward, F. R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes (Hemisphere Publishing, 1988).

  68. Li, R. & Wang, P. Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting. Nat. Water 1, 573–586 (2023).

    Article  ADS  Google Scholar 

  69. Chen, G. Thermodynamics of hydrogels for applications in atmospheric water harvesting, evaporation, and desalination. Phys. Chem. Chem. Phys. 24, 12329–12345 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, X. et al. Unusual temperature dependence of water sorption in semi‐crystalline hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211763 (2023).

  71. Gordeeva, L. G., Solovyeva, M. V., Sapienza, A. & Aristov, Y. I. Potable water extraction from the atmosphere: potential of MOFs. Renew. Energy 148, 72–80 (2020).

    Article  CAS  Google Scholar 

  72. Xu, J. et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 6, 1542–1554 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, T. et al. Ultrahigh-energy-density sorption thermal battery enabled by graphene aerogel-based composite sorbents for thermal energy harvesting from air. ACS Energy Lett. 6, 1795–1802 (2021).

    Article  CAS  Google Scholar 

  74. Zhao, F. et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31, 1806446 (2019).

    Article  Google Scholar 

  75. Yilmaz, G. et al. Autonomous atmospheric water seeping MOF matrix. Sci. Adv. 6, eabc8605 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Taylor, M. K. et al. Tuning the adsorption-induced phase change in the flexible metal-organic framework Co(bdp). J. Am. Chem. Soc. 138, 15019–15026 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Shigematsu, A., Yamada, T. & Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Tan, J. et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13, 3643 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    Article  CAS  Google Scholar 

  80. Kärger, J., Ruthven, D. M. & Theodorou, D. N. Diffusion in Nanoporous Materials (John Wiley & Sons, 2012).

  81. Ye, Z. et al. Reaction/sorption kinetics of salt hydrates for thermal energy storage. J. Energy Storage 56, 106122 (2022).

    Article  Google Scholar 

  82. Song, W., Zheng, Z., Alawadhi, A. H. & Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water 1, 626–634 (2023).

    Article  Google Scholar 

  83. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. et al. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3, 100879 (2022).

    Article  CAS  Google Scholar 

  85. Gao, S. et al. Tailoring interfaces for atmospheric water harvesting: fundamentals and applications. Matter 6, 2182–2205 (2023).

    Article  CAS  Google Scholar 

  86. Song, Y. et al. Hierarchical engineering of sorption-based atmospheric water harvesters. Adv. Mater. https://doi.org/10.1002/adma.202209134 (2023).

  87. Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).

    Article  Google Scholar 

  88. Guo, X., Dong, X., Zou, G., Gao, H. & Zhai, W. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Sci. Adv. 9, eadf7075 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    Article  ADS  Google Scholar 

  90. Wang, Y. et al. MXenes for energy harvesting. Adv. Mater. 34, 2108560 (2022).

    Article  CAS  Google Scholar 

  91. Song, Y. et al. High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17, 857–863 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Daniel, P. T. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  Google Scholar 

  93. He, T. et al. Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7, 935–951 (2023).

    Article  CAS  Google Scholar 

  94. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    Article  PubMed  ADS  Google Scholar 

  95. Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048–18062 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Zheng, Z., Hanikel, N., Lyu, H. & Yaghi, O. M. Broadly tunable atmospheric water harvesting in multivariate metal-organic frameworks. J. Am. Chem. Soc. 144, 22669–22675 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Ntep, T. J. M. M. et al. When polymorphism in metal‐organic frameworks enables water sorption profile tunability for enhancing heat allocation and water harvesting performance. Adv. Mater. https://doi.org/10.1002/adma.202211302 (2023).

  98. Suh, B. L., Chong, S. & Kim, J. Photochemically induced water harvesting in metal-organic framework. ACS Sustain. Chem. Eng. 7, 15854–15859 (2019).

    Article  CAS  Google Scholar 

  99. Nune, S. K. et al. Anomalous water expulsion from carbon-based rods at high humidity. Nat. Nanotechnol. 11, 791–797 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  100. Sun, Y. et al. Tunable LiCl@UiO-66 composites for water sorption-based heat transformation applications. J. Mater. Chem. A 8, 13364–13375 (2020).

    Article  CAS  Google Scholar 

  101. Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Zheng, Z., Alawadhi, A. H. & Yaghi, O. M. Green synthesis and scale-up of MOFs for water harvesting from air. Mol. Front. J. 7, 1–20 (2023).

    Article  CAS  Google Scholar 

  103. Yang, L. et al. A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl Acad. Sci. USA 118, e2023164118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bae, J., Yun, T. G., Suh, B. L., Kim, J. & Kim, I. D. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13, 527–534 (2020).

    Article  CAS  Google Scholar 

  105. Bae, J. et al. Towards Watt-scale hydroelectric energy harvesting by Ti3C2TX-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 15, 123–135 (2022).

    Article  CAS  Google Scholar 

  106. Zhang, X. et al. Double-gradient-structured composite aerogels for ultra-high-performance moisture energy harvesting. Energy Environ. Sci. 16, 3600–3611 (2023).

    Article  CAS  Google Scholar 

  107. Sun, Z. et al. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat. Commun. 13, 5077 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Wang, P., Xu, J., Wang, R. & Li, T. Emerging self-sustained electricity generation enabled by moisture. Cell Rep. Phys. Sci. 4, 101517 (2023).

    Article  CAS  Google Scholar 

  109. Li, T. et al. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting. Nat. Commun. 13, 6771 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Seo, Y. et al. Energy-efficient dehumidification over hierarchically porous metal–organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  112. Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    Article  PubMed  ADS  Google Scholar 

  113. Primož, P. & Wang, R. Sustainable cooling with water generation. Science 380, 458–459 (2023).

    Article  ADS  Google Scholar 

  114. Lin, H. et al. Metal–organic frameworks for water harvesting and concurrent carbon capture: a review for hygroscopic materials. Adv. Mater. https://doi.org/10.1002/adma.202209073 (2023).

  115. Bai, J. et al. Self-induced interface enhanced moisture-harvesting and light-trapping toward high performance electric power generation. Energy Environ. Sci. 16, 3088–3097 (2023).

    Article  CAS  Google Scholar 

  116. Rieth, A. J. et al. Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps. J. Am. Chem. Soc. 140, 17591–17596 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    Article  CAS  ADS  Google Scholar 

  118. Solovyeva, M., Krivosheeva, I., Gordeeva, L. & Aristov, Y. MIL-160 as an adsorbent for atmospheric water harvesting. Energies 14, 3586 (2021).

    Article  CAS  Google Scholar 

  119. Lee, J. S. et al. Porous metal–organic framework CUK-1 for adsorption heat allocation toward green applications of natural refrigerant water. ACS Appl. Mater. Inter. 11, 25778–25789 (2019).

    Article  CAS  Google Scholar 

  120. Ghosh, P., Colón, Y. J. & Snurr, R. Q. Water adsorption in UiO-66: the importance of defects. Chem. Commun. 50, 11329–11331 (2014).

    Article  CAS  Google Scholar 

  121. Chen, Z. et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc. 141, 2900–2905 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Lenzen, D. et al. A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling. Nat. Commun. 10, 3025 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  123. Hanikel, N. et al. Evolution of water structures in metal–organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Rieth, A. J., Yang, S., Wang, E. N. & Dincǎ, M. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent. Sci. 3, 668–672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Towsif Abtab, S. M. et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4, 94–105 (2018).

    Article  CAS  Google Scholar 

  126. Reinsch, H. et al. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 25, 17–26 (2013).

    Article  CAS  Google Scholar 

  127. Kim, H. et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Cho, K. H. et al. Rational design of a robust aluminum metal–organic framework for multi-purpose water-sorption-driven heat allocations. Nat. Commun. 11, 5112 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  130. Akiyama, G. et al. Effect of functional groups in MIL-101 on water sorption behavior. Micropor. Mesopor. Mat. 157, 89–93 (2012).

    Article  CAS  Google Scholar 

  131. Karak, S. et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139, 1856–1862 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Nguyen, H. L. et al. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS Cent. Sci. 8, 926–932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stegbauer, L. et al. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chem. Mater. 27, 7874–7881 (2015).

    Article  CAS  Google Scholar 

  134. Biswal, B. P. et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 3, 23664–23669 (2015).

    Article  CAS  Google Scholar 

  135. De Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J. & Kapteijn, F. Adsorption-driven heat pumps: the potential of metal–organic frameworks. Chem. Rev. 115, 12205–12250 (2015).

    Article  PubMed  Google Scholar 

  136. Yang, K., Pan, T., Pinnau, I., Shi, Z. & Han, Y. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy 78, 105326 (2020).

    Article  CAS  Google Scholar 

  137. Nandakumar, D. K. et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ. Sci. 11, 2179–2187 (2018).

    Article  Google Scholar 

  138. Zhang, X. et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting. Nano Energy 75, 104873 (2020).

    Article  CAS  Google Scholar 

  139. Yang, J. et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv. Mater. 32, 2002936 (2020).

    Article  CAS  Google Scholar 

  140. Matsumoto, K., Sakikawa, N. & Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 9, 2315 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  141. Nandakumar, D. K. et al. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 31, 1806730 (2019).

    Article  Google Scholar 

  142. Kim, K. M. et al. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data 61, 1547–1554 (2016).

    Article  CAS  Google Scholar 

  143. Serbezov, A. Adsorption equilibrium of water vapor on F-200 activated alumina. J. Chem. Eng. Data 48, 421–425 (2003).

    Article  CAS  Google Scholar 

  144. Mohammed, R. H., Mesalhy, O., Elsayed, M. L., Su, M. & Chow, C. L. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications. Int. J. Refrig. 86, 40–47 (2018).

    Article  CAS  Google Scholar 

  145. Kittaka, S., Ishimaru, S., Kuranishi, M., Matsuda, T. & Yamaguchi, T. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15. Phys. Chem. Chem. Phys. 8, 3223–3231 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Qi, S., Hay, K. J., Rood, M. J. & Cal, M. P. Equilibrium and heat of adsorption for water vapor and activated carbon. J. Environ. Eng. 126, 267–271 (2000).

    Article  CAS  Google Scholar 

  147. Liu, H., Nagano, K., Sugiyama, D., Togawa, J. & Nakamura, M. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat. Int. J. Heat Mass Trans. 65, 471–480 (2013).

    Article  CAS  Google Scholar 

  148. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3, 636–643 (2020).

    Article  Google Scholar 

  149. Pu, S. et al. Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32, 1907307 (2020).

    Article  CAS  Google Scholar 

  150. Kim, S., Park, J. H., Lee, J. W., Kim, Y. & Kang, Y. T. Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 14, 2374 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  151. Wang, C. et al. A thermal management strategy for electronic devices based on moisture sorption–desorption processes. Joule 4, 435–447 (2020).

    Article  CAS  Google Scholar 

  152. Wang, H. et al. Moisture adsorption–desorption full cycle power generation. Nat. Commun. 13, 2524 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. Shen, D. et al. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, 1705925 (2018).

    Article  Google Scholar 

  154. Xu, T. et al. An efficient polymer moist-electric generator. Energy Environ. Sci. 12, 972–978 (2019).

    Article  CAS  Google Scholar 

  155. Zhang, H. et al. High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 35, 2300398 (2023).

    Article  CAS  Google Scholar 

  156. Li, P., Su, N., Wang, Z. & Qiu, J. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China for Young Scientists (Grant No. 52206266), the National Natural Science Funds for Distinguished Young Scholar of China (Grant No. 52325601), the Major Program of National Natural Science Foundation of China (Grant No. 52293412), and National Natural Science Foundation of China (Grant No. 22035005 and No. 52022051).

Author information

Authors and Affiliations

Authors

Contributions

J.X. contributed to writing, reviewing and editing the manuscript and creating the figures. P.W. and Z.B. contributed to reviewing and editing the manuscript. H.C., R.W. and L.Q. contributed to reviewing, editing and discussing the manuscript. T.L. contributed to writing, reviewing and editing the manuscript and supervised the project.

Corresponding authors

Correspondence to Ruzhu Wang, Liangti Qu or Tingxian Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Zuankai Wang, Jason Woods and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, P., Bai, Z. et al. Sustainable moisture energy. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-023-00643-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-023-00643-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing