Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of metal–organic frameworks in a carbon-neutral energy cycle

Abstract

Reducing society's reliance on fossil fuels presents one of the most pressing energy and environmental challenges facing our planet. Hydrogen, methane and carbon dioxide, which are some of the smallest and simplest molecules known, may lie at the centre of solving this problem through realization of a carbon-neutral energy cycle. Potentially, this could be achieved through the deployment of hydrogen as the fuel of the long term, methane as a transitional fuel, and carbon dioxide capture and sequestration as the urgent response to ongoing climate change. Here we detail strategies and technologies developed to overcome the difficulties encountered in the capture, storage, delivery and conversion of these gas molecules. In particular, we focus on metal–organic frameworks in which metal oxide ‘hubs’ are linked with organic ‘struts’ to make materials of ultrahigh porosity, which provide a basis for addressing this challenge through materials design on the molecular level.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Production pathways of key gases in the provision of energy.

© LU DING/DELFT UNIVERSITY OF TECHNOLOGY

Figure 2: Crystal structure of MOF-210.
Figure 3: Crystal structure of MOF-519.
Figure 4: Carbon dioxide uptake versus BET surface area.
Figure 5: Different principles of selective carbon dioxide capture in the presence of water.

References

  1. BP Statistical Review of World Energy June 2015 (BP, 2015); http://go.nature.com/YgrZI1

  2. CO2 Emissions (World Bank, 2015); http://go.nature.com/yLaqyF

  3. America's Energy Future: Technology and Transformation: Summary Edition (National Academies Press, 2009); http://go.nature.com/YLvTAe This report provides information on potentials barriers costs and impact of energy supply and technologies.

  4. Zhou, N. et al. China's Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory, 2011); http://go.nature.com/toqvwR

    Book  Google Scholar 

  5. Lighting the Way: Toward a Sustainable Energy Future (InterAcademy Council, 2007); http://go.nature.com/LfJR9g

  6. Basic Research Needs for Carbon Capture: Beyond 2020 (US Department of Energy, 2010); http://go.nature.com/1bM9qj

  7. The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions (Energy Information Administration, 2008); http://go.nature.com/4Bk1jV

  8. Basic Research Needs for the Hydrogen Economy (US Department of Energy, 2004); http://go.nature.com/GZYzy6

  9. Lipman, T. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance, 2011); http://go.nature.com/p2ZuT4

    Google Scholar 

  10. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  Google Scholar 

  11. Hydrogen Storage (US Department of Energy, 2015); http://go.nature.com/ispE6Q

  12. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (USDRIVE, 2015); http://go.nature.com/EHHdZ5

  13. Zoellter, J. Mercedes-Benz F125 concept: Mercedes' dream of a 2025 S-class takes flight. Car and Driver (21 October 2015); http://go.nature.com/kFaC3e

    Google Scholar 

  14. Sudik, A. et al. Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence (HSECoE, 2015); http://go.nature.com/SrJePp

    Google Scholar 

  15. Wang, X.-S. et al. Enhancing H2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks. Angew. Chem. Int. Ed. 47, 7263–7266 (2008).

    Article  Google Scholar 

  16. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).

    Article  Google Scholar 

  17. Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    Article  Google Scholar 

  18. Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005). This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2–3 wt% and 6 wt% at 77 K.

    Article  Google Scholar 

  19. Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metal−organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).

    Article  Google Scholar 

  20. Li, Y. & Yang, R. T. Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006).

    Article  Google Scholar 

  21. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs.

    Article  Google Scholar 

  22. Furukawa, H., Miller, M. A. & Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. J. Mater. Chem. 17, 3197–3204 (2007).

    Article  Google Scholar 

  23. Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).

    Article  Google Scholar 

  24. Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  Google Scholar 

  25. Grunker, R. et al. A new metal–organic framework with ultra-high surface area. Chem. Commun. 50, 3450–3452 (2014).

    Article  Google Scholar 

  26. Eddaoudi, M. et al. Porous metal−organic polyhedra:25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).

    Article  Google Scholar 

  27. Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 9, 863–864 (2001).

    Article  Google Scholar 

  28. Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008). This contribution provided the foundation for a large class of isoreticular MOFs with high H2 adsorption.

    Article  Google Scholar 

  29. Yan, Y. et al. Metal−organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092–4094 (2010).

    Article  Google Scholar 

  30. Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010).

    Article  Google Scholar 

  31. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    Article  Google Scholar 

  32. Farha, O. K. et al. Designing higher surface area metal–organic frameworks: are triple bonds better than phenyls?. J. Am. Chem. Soc. 134, 9860–9863 (2012).

    Article  Google Scholar 

  33. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?. J. Am. Chem. Soc. 134, 15016–15021 (2012). This paper reports a MOF that currently holds the world record with respect to BET surface area.

    Article  Google Scholar 

  34. Liu L. Konstas K. Hill M. R. & Telfer S. G. Programmed pore architectures in modular quaternary metal–organic frameworks. J. Am. Chem. Soc. 135, 17731–17734 (2013).

    Article  Google Scholar 

  35. Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets. J. Am. Chem. Soc. 135, 14016–14019 (2013).

    Article  Google Scholar 

  36. Schoedel, A. et al. The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem. Int. Ed. 52, 2902–2905 (2013).

    Article  Google Scholar 

  37. Frost, H., Düren, T. & Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006).

    Article  Google Scholar 

  38. Yang, Q. & Zhong, C. Understanding hydrogen adsorption in metal–organic frameworks with open metal sites: a computational study. J. Phys. Chem. B 110, 655–658 (2006).

    Article  Google Scholar 

  39. Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 36, 5436–5438 (2009).

    Article  Google Scholar 

  40. Bae, Y.-S. & Snurr, R. Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Micropor. Mesopor. Mater. 132, 300–303 (2010).

    Article  Google Scholar 

  41. Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620 (2015).

    Article  Google Scholar 

  42. MOVE Program Overview (ARPA-E, 2012); http://go.nature.com/Vuqhoi

  43. Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    Article  Google Scholar 

  44. Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).

    Article  Google Scholar 

  45. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage.

    Article  Google Scholar 

  46. Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). This contribution revealed the first MOF with porosity and surface area exceeding previous records and featuring a robust architecture.

    Article  Google Scholar 

  47. Noro, S.-i., Kitagawa, S., Kondo, M. & Seki, K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000).

    Article  Google Scholar 

  48. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  Google Scholar 

  49. Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014). This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery.

    Article  Google Scholar 

  50. Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    Article  Google Scholar 

  51. Wilmer, C. E. et al. Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013).

    Article  Google Scholar 

  52. Wu, H., Zhou, W. & Yildirim, T. High-capacity methane storage in metal−organic frameworks M2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009).

    Article  Google Scholar 

  53. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature Chem. 4, 83–89 (2012).

    Article  Google Scholar 

  54. Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  55. Atmospheric CO 2 Data (Scripps Institution of Oceanography, 2015); http://go.nature.com/z3Cgf5

  56. Socolow, R. Stabilization Wedges and the Polygame (2013); http://go.nature.com/7j8mBi

    Google Scholar 

  57. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    Article  Google Scholar 

  58. Orr, J. F. M. CO2 capture and storage: are we ready? Energy Environ. Sci. 2, 449–458 (2009).

    Article  Google Scholar 

  59. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  Google Scholar 

  60. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).

    Article  Google Scholar 

  61. Rosi, N. L. et al. Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).

    Article  Google Scholar 

  62. Li, B. et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal–organic framework. Angew. Chem. Int. Ed. 51, 1412–1415 (2012).

    Article  Google Scholar 

  63. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013). This publication shows a crystal engineering strategy to control pore funtionality and size in MOFs for CO2 separation in the presence of water.

    Article  Google Scholar 

  64. Cui, P. et al. Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892–18895 (2012).

    Article  Google Scholar 

  65. Granite, E. J. & Pennline, H. W. Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41, 5470–5476 (2002).

    Article  Google Scholar 

  66. Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. From the cover: highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637–20640 (2009).

    Article  Google Scholar 

  67. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012).

    Article  Google Scholar 

  68. Fracaroli, A. M. et al. Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863–8866 (2014). This paper demonstrates a method for covalently functionalizing the interior of MOFs to capture CO2 in the presence of water.

    Article  Google Scholar 

  69. Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).

    Article  Google Scholar 

  70. Nguyen, N. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 53, 10645–10648 (2014).

    Article  Google Scholar 

  71. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  Google Scholar 

  72. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    Article  Google Scholar 

  73. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  Google Scholar 

  74. Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    Article  Google Scholar 

  75. Xiang, S. et al. Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions. Nature Commun. 3, 954 (2012).

    Article  Google Scholar 

  76. Li, J.-R. et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Commun. 4, 1538 (2013).

    Article  Google Scholar 

  77. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).

    Article  Google Scholar 

  78. Liu, B. & Smit, B. Comparative molecular simulation study of CO2/N2 and CH4/N2 Separation in zeolites and metal−organic frameworks. Langmuir 25, 5918–5926 (2009).

    Article  Google Scholar 

  79. Yazaydın, A. O. et al. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009).

    Article  Google Scholar 

  80. Wilmer, C. E. & Snurr, R. Q. Towards rapid computational screening of metal–organic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem. Eng. J. 171, 775–781 (2011).

    Article  Google Scholar 

  81. Greathouse, J. A. & Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678–10679 (2006).

    Article  Google Scholar 

  82. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  Google Scholar 

  83. Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    Article  Google Scholar 

  84. Somorjai, G. A., Frei, H. & Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131, 16589–16605 (2009).

    Article  Google Scholar 

  85. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  86. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  Google Scholar 

  87. Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    Article  Google Scholar 

  88. Wang, C.-C., Zhang, Y.-Q., Li, J. & Wang, P. Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. J. Mol. Struct. 1083, 127–136 (2015).

    Article  Google Scholar 

  89. Fu, Y. et al. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).

    Article  Google Scholar 

  90. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  Google Scholar 

  91. Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).

    Article  Google Scholar 

  92. Gao, W.-Y. et al. Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014).

    Article  Google Scholar 

  93. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  Google Scholar 

  94. Park, H. J., Lim, D.-W., Yang, W. S., Oh, T.-R. & Suh, M. P. A highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251–7260 (2011).

    Article  Google Scholar 

  95. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  Google Scholar 

  96. Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    Article  Google Scholar 

  97. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  98. Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  Google Scholar 

  99. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  Google Scholar 

  100. Haszeldine, R. S. Carbon capture and storage: how green can black be?. Science 325, 1647–1652 (2009).

    Article  Google Scholar 

  101. Siriwardane, R. V., Shen, M.-S., Fisher, E. P. & Poston, J. A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Funding of MOF research in the Yaghi group is supported by BASF SE (Ludwigshafen, Germany), US Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053), US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center grant (DE-SC0001015), and King Abdulaziz City of Science and Technology (KACST). A.S. gratefully acknowledges the German Research Foundation (DFG, SCHO 1639/1-1) for financial support. The authors would like to thank A. Fracaroli for help with collating data on carbon dioxide capture in the presence of water, L. Ding (Delft University of Technology) for producing Fig. 1 graphics, and Ahmad S. Alshammari for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Yaghi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Table of metal–organic frameworks showing Brunauer–Emmett–Teller surface area versus CO2 uptake at 298 K and 1 bar. (XLSX 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schoedel, A., Ji, Z. & Yaghi, O. The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat Energy 1, 16034 (2016). https://doi.org/10.1038/nenergy.2016.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.34

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing