Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks

Abstract

Ammonia is a critical chemical in agriculture and industry that is produced on a massive scale via the Haber–Bosch process1. The environmental impact of this process, which uses methane as a fuel and feedstock for hydrogen, has motivated the need for more sustainable ammonia production2,3,4,5. However, many strategies that use renewable hydrogen are not compatible with existing methods for ammonia separation6,7,8,9. Given their high surface areas and structural and chemical versatility, metal–organic frameworks (MOFs) hold promise for ammonia separations, but most MOFs bind ammonia irreversibly or degrade on exposure to this corrosive gas10,11. Here we report a tunable three-dimensional framework that reversibly binds ammonia by cooperative insertion into its metal–carboxylate bonds to form a dense, one-dimensional coordination polymer. This unusual adsorption mechanism provides considerable intrinsic thermal management12, and, at high pressures and temperatures, cooperative ammonia uptake gives rise to large working capacities. The threshold pressure for ammonia adsorption can further be tuned by almost five orders of magnitude through simple synthetic modifications, pointing to a broader strategy for the development of energy-efficient ammonia adsorbents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of Cu(cyhdc) and NH3 uptake.
Fig. 2: Single-crystal X-ray diffraction structure of Cu(NH3)4(cyhdc) and the local Cu environment in Cu(NH3)2(cyhdc).
Fig. 3: Ammonia desorption from Cu(NH3)2(cyhdc).
Fig. 4: Temperature dependence of NH3 adsorption in Cu(cyhdc) and impact of metal and linker variations on NH3 uptake in M(dicarboxylate) frameworks.

Similar content being viewed by others

Data availability

Crystal structure data are available in the Cambridge Structural Database under deposition numbers 2202925, 2203378, 2203379, 2203380 and 2208967. All other data are available from the corresponding author upon request.

References

  1. Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    Article  CAS  Google Scholar 

  2. Guo, J. & Chen, P. Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017).

    Article  CAS  Google Scholar 

  3. Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  ADS  CAS  Google Scholar 

  4. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    Article  CAS  Google Scholar 

  7. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  8. Malmali, M. et al. Better absorbents for ammonia separation. ACS Sustain. Chem. Eng. 6, 6536–6546 (2018).

    Article  CAS  Google Scholar 

  9. Smith, C., McCormick, A. V. & Cussler, E. L. Optimizing the conditions for ammonia production using absorption. ACS Sustain. Chem. Eng. 7, 4019–4029 (2019).

    Article  CAS  Google Scholar 

  10. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Kajiwara, T. et al. A systematic study on the stability of porous coordination polymers against ammonia. Chem. Eur. J. 20, 15611–15617 (2014).

    Article  CAS  Google Scholar 

  12. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Godfrey, H. G. W. et al. Ammonia storage by reversible host–guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Removal of ammonia emissions via reversible structural transformation in M(BDC) (M = Cu, Zn, Cd) metal–organic frameworks. Environ. Sci. Technol. 54, 3636–3642 (2020).

    Article  ADS  CAS  Google Scholar 

  15. Chen, Y. et al. Environmentally friendly synthesis of flexible MOFs M(NA)2 (M = Zn, Co, Cu, Cd) with large and regenerable ammonia capacity. J. Mater. Chem. A 6, 9922–9929 (2018).

    Article  CAS  Google Scholar 

  16. Chen, Y., Li, L., Li, J., Ouyang, K. & Yang, J. Ammonia capture and flexible transformation of M-2 (INA)(M = Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 306, 340–347 (2016).

    Article  CAS  Google Scholar 

  17. Lyu, P. et al. Ammonia capture via an unconventional reversible guest-induced metal-linker bond dynamics in a highly stable metal–organic framework. Chem. Mater. 33, 6186–6192 (2021).

    Article  CAS  Google Scholar 

  18. Kumagai, H. et al. Metal−organic frameworks from copper dimers with cis- and trans-1,4-cyclohexanedicarboxylate and cis,cis-1,3,5-cyclohexanetricarboxylate. Inorg. Chem. 46, 5949–5956 (2007).

    Article  CAS  Google Scholar 

  19. Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122–123 (2001).

    Article  Google Scholar 

  20. Kim, D. W. et al. High ammonia uptake of a metal–organic framework adsorbent in a wide pressure range. Angew. Chemie Int. Ed. 59, 22531–22536 (2020).

    Article  CAS  Google Scholar 

  21. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Reed, D. A. et al. A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature 550, 96–100 (2017).

    Article  ADS  CAS  Google Scholar 

  23. Liu, C. Y. & Aika, K. Ammonia absorption on alkaline earth halides as ammonia separation and storage procedure. Bull. Chem. Soc. Jpn 77, 123–131 (2004).

    Article  CAS  Google Scholar 

  24. Kang, D. W. et al. A hydrogen‐bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem. Int. Ed. 131, 16298–16301 (2019).

    Article  ADS  Google Scholar 

  25. Chen, Y. et al. Antenna-protected metal–organic squares for water/ammonia uptake with excellent stability and regenerability. ACS Sustain. Chem. Eng. 5, 5082–5089 (2017).

    Article  CAS  Google Scholar 

  26. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  27. Wang, L., Chen, L., Wang, H. L. & Liao, D. L. The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents. Renew. Energy 34, 1016–1023 (2009).

    Article  CAS  Google Scholar 

  28. Wang, L. W., Wang, R. Z., Lu, Z. S., Chen, C. J. & Wu, J. Y. Comparison of the adsorption performance of compound adsorbent in a refrigeration cycle with and without mass recovery. Chem. Eng. Sci. 61, 3761–3770 (2006).

    Article  CAS  Google Scholar 

  29. Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn, Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).

    Article  CAS  Google Scholar 

  30. Katz, M. J. et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalt. Trans. 45, 4150–4153 (2016).

    Article  CAS  Google Scholar 

  31. Hiraide, S., Tanaka, H., Ishikawa, N. & Miyahara, M. T. Intrinsic thermal management capabilities of flexible metal–organic frameworks for carbon dioxide separation and capture. ACS Appl. Mater. Interfaces 9, 41066–41077 (2017).

    Article  CAS  Google Scholar 

  32. Feldmann, W. K., Esterhuysen, C. & Barbour, L. J. Pressure-gradient sorption calorimetry of flexible porous materials: implications for intrinsic thermal management. ChemSusChem 13, 5220–5223 (2020).

    Article  CAS  Google Scholar 

  33. An, G. et al. Metal–organic frameworks for ammonia‐based thermal energy storage. Small 17, 2102689 (2021).

    Article  CAS  Google Scholar 

  34. Liu, Z. et al. The potential use of metal–organic framework/ammonia working pairs in adsorption chillers. J. Mater. Chem. A 9, 6188–6195 (2021).

    Article  CAS  Google Scholar 

  35. Kale, M. J. et al. Optimizing ammonia separation via reactive absorption for sustainable ammonia synthesis. ACS Appl. Energy Mater. 3, 2576–2584 (2020).

    Article  CAS  Google Scholar 

  36. Hrtus, D. J., Nowrin, F. H., Lomas, A., Fotsa, Y. & Malmali, M. Achieving+ 95% ammonia purity by optimizing the absorption and desorption conditions of supported metal halides. ACS Sustain. Chem. Eng. 10, 204–212 (2021).

    Article  Google Scholar 

  37. Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).

  38. Paoletti, P. Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values. Pure Appl. Chem. 56, 491–522 (1984).

    Article  Google Scholar 

  39. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  40. Jiang, L. & Roskilly, A. P. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: a review. Int. J. Heat Mass Transf. 130, 1206–1225 (2019).

    Article  CAS  Google Scholar 

  41. Rigaku Oxford Diffraction CrysAlisPro Software System, version 1.171.39.7a (Rigaku, 2015).

  42. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 71, 3−8 (2015).

  43. Sheldrick, G. M. SHELXS (Univ. Göttingen, 2014).

  44. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112−122 (2008).

  45. Sheldrick, G. M. SHELXL (Univ. Göttingen, 2014).

  46. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339−341 (2009).

  47. Carson, C. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140−2145 (2014).

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Separation Science in the Chemical Sciences, Geosciences, and Biosciences Division, under Award Number DE-SC0019992. We are grateful for the support of BERS through an Arnold O. Beckman Postdoctoral Fellowship in Chemical Sciences and of ABT and EOV through NSF Graduate Research Fellowships (DGE 1752814). DFT calculations were performed using infrastructure from the UC Berkeley Molecular Graphics and Computation Facility, which is supported by the NIH (NIH S10OD023532). Use of the APS at Argonne National Laboratory was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. We acknowledge K. R. Meihaus for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

B.E.R.S. and J.R.L. designed the research. B.E.R.S., A.B.T., H.F., E.O.V., M.V.P. and M.N.D. performed the experiments. B.E.R.S. and J.R.L. analysed the data. B.E.R.S. wrote the manuscript. B.E.R.S. and J.R.L. edited the manuscript.

Corresponding author

Correspondence to Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Hiroshi Kitagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–37 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, B.E.R., Turkiewicz, A.B., Furukawa, H. et al. A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks. Nature 613, 287–291 (2023). https://doi.org/10.1038/s41586-022-05409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05409-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing